半简单局部系统的同调与分解定理

Chuanhao Wei, Ruijie Yang
{"title":"半简单局部系统的同调与分解定理","authors":"Chuanhao Wei, Ruijie Yang","doi":"10.1007/s00029-023-00895-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the cohomology of semisimple local systems in the spirit of classical Hodge theory. On the one hand, we construct a generalized Weil operator from the complex conjugate of the cohomology of a semisimple local system to the cohomology of its dual local system, which is functorial with respect to smooth restrictions. This operator allows us to study the Poincaré pairing, usually not positive definite, in terms of a positive definite Hermitian pairing. On the other hand, we prove a global invariant cycle theorem for semisimple local systems. As an application, we give a new proof of Sabbah’s Decomposition Theorem for the direct images of semisimple local systems under proper algebraic maps, by adapting the method of de Cataldo-Migliorini, without using the category of polarizable twistor <span>\\({\\mathscr {D}}\\)</span>-modules. This answers a question of Sabbah.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"511 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cohomology of semisimple local systems and the decomposition theorem\",\"authors\":\"Chuanhao Wei, Ruijie Yang\",\"doi\":\"10.1007/s00029-023-00895-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study the cohomology of semisimple local systems in the spirit of classical Hodge theory. On the one hand, we construct a generalized Weil operator from the complex conjugate of the cohomology of a semisimple local system to the cohomology of its dual local system, which is functorial with respect to smooth restrictions. This operator allows us to study the Poincaré pairing, usually not positive definite, in terms of a positive definite Hermitian pairing. On the other hand, we prove a global invariant cycle theorem for semisimple local systems. As an application, we give a new proof of Sabbah’s Decomposition Theorem for the direct images of semisimple local systems under proper algebraic maps, by adapting the method of de Cataldo-Migliorini, without using the category of polarizable twistor <span>\\\\({\\\\mathscr {D}}\\\\)</span>-modules. This answers a question of Sabbah.</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"511 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-023-00895-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-023-00895-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们以经典霍奇理论的精神研究半简单局部系统的同调。一方面,我们构建了一个广义的魏尔算子,从半简单局部系统的同调的复共轭到其对偶局部系统的同调,它在光滑限制方面是函数式的。通过这个算子,我们可以用正定赫米特配对来研究通常不是正定的波恩卡莱配对。另一方面,我们证明了半简单局部系统的全局不变循环定理。作为应用,我们通过改编德-卡塔尔多-米格里奥里尼(de Cataldo-Migliorini )的方法,在不使用可极化扭子({\mathscr {D}})模块范畴的情况下,给出了半简单局部系统在适当代数映射下直接映像的萨巴赫分解定理的新证明。这回答了萨巴赫的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cohomology of semisimple local systems and the decomposition theorem

Cohomology of semisimple local systems and the decomposition theorem

In this paper, we study the cohomology of semisimple local systems in the spirit of classical Hodge theory. On the one hand, we construct a generalized Weil operator from the complex conjugate of the cohomology of a semisimple local system to the cohomology of its dual local system, which is functorial with respect to smooth restrictions. This operator allows us to study the Poincaré pairing, usually not positive definite, in terms of a positive definite Hermitian pairing. On the other hand, we prove a global invariant cycle theorem for semisimple local systems. As an application, we give a new proof of Sabbah’s Decomposition Theorem for the direct images of semisimple local systems under proper algebraic maps, by adapting the method of de Cataldo-Migliorini, without using the category of polarizable twistor \({\mathscr {D}}\)-modules. This answers a question of Sabbah.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信