{"title":"尺度参数趋于零的最大熵标准回归模型","authors":"Lianqiang Yang , Ying Jing , Teng Li","doi":"10.1016/j.jspi.2023.106134","DOIUrl":null,"url":null,"abstract":"<div><p>Maximum correntropy criterion regression (MCCR) models have been well studied within the theoretical framework of statistical learning when the scale parameters take fixed values or go to infinity. This paper studies MCCR models with tending-to-zero scale parameters. It is revealed that the optimal learning rate of MCCR models is <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> in the asymptotic sense when the sample size <span><math><mi>n</mi></math></span> goes to infinity. In the case of finite samples, the performance and robustness of MCCR, Huber and the least square regression models are compared. The applications of these three methods to real data are also demonstrated.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum correntropy criterion regression models with tending-to-zero scale parameters\",\"authors\":\"Lianqiang Yang , Ying Jing , Teng Li\",\"doi\":\"10.1016/j.jspi.2023.106134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Maximum correntropy criterion regression (MCCR) models have been well studied within the theoretical framework of statistical learning when the scale parameters take fixed values or go to infinity. This paper studies MCCR models with tending-to-zero scale parameters. It is revealed that the optimal learning rate of MCCR models is <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> in the asymptotic sense when the sample size <span><math><mi>n</mi></math></span> goes to infinity. In the case of finite samples, the performance and robustness of MCCR, Huber and the least square regression models are compared. The applications of these three methods to real data are also demonstrated.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375823001039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375823001039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
最大熵准则回归(MCCR)模型在尺度参数取固定值或无穷大时的统计学习理论框架内得到了很好的研究。本文研究了尺度参数趋于零的 MCCR 模型。研究发现,当样本量 n 变为无穷大时,MCCR 模型的最优学习率在渐近意义上为 O(n-1)。在有限样本的情况下,比较了 MCCR、Huber 和最小平方回归模型的性能和鲁棒性。同时还展示了这三种方法在实际数据中的应用。
Maximum correntropy criterion regression models with tending-to-zero scale parameters
Maximum correntropy criterion regression (MCCR) models have been well studied within the theoretical framework of statistical learning when the scale parameters take fixed values or go to infinity. This paper studies MCCR models with tending-to-zero scale parameters. It is revealed that the optimal learning rate of MCCR models is in the asymptotic sense when the sample size goes to infinity. In the case of finite samples, the performance and robustness of MCCR, Huber and the least square regression models are compared. The applications of these three methods to real data are also demonstrated.