布洛赫空间与伯格曼空间之间的类塞萨罗算子

IF 1.2 3区 数学 Q1 MATHEMATICS
Yuting Guo, Pengcheng Tang, Xuejun Zhang
{"title":"布洛赫空间与伯格曼空间之间的类塞萨罗算子","authors":"Yuting Guo,&nbsp;Pengcheng Tang,&nbsp;Xuejun Zhang","doi":"10.1007/s43034-023-00309-6","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\({\\mathbb {D}}\\)</span> be the unit disc in the complex plane. Given a positive finite Borel measure <span>\\(\\mu \\)</span> on the radius [0, 1), we denote the <i>n</i>-th moment of <span>\\(\\mu \\)</span> as <span>\\(\\mu _{n}\\)</span>, that is, <span>\\(\\mu _{n}=\\int _{[0,1)}t^{n} \\textrm{d}\\mu (t).\\)</span> The Cesàro-like operator <span>\\({\\mathcal {C}}_{\\mu ,s}\\)</span> is defined on <span>\\(H({\\mathbb {D}})\\)</span> as follows: If <span>\\(f(z)=\\sum _{n=0}^{\\infty }a_{n}z^{n} \\in H({\\mathbb {D}} )\\)</span> then <span>\\({\\mathcal {C}}_{\\mu ,s}(f)\\)</span> is defined by </p><div><div><span>$$\\begin{aligned} {\\mathcal {C}}_{\\mu ,s}(f)(z)=\\sum _{n=0}^{\\infty }\\left( \\mu _{n} \\sum _{k=0}^{n}\\frac{\\Gamma (n-k+s)}{\\Gamma (s)(n-k)!}a_{k}\\right) z^{n},\\ \\ z\\in {\\mathbb {D}}. \\end{aligned}$$</span></div></div><p>In this paper, our focus is on the action of the <span>\\(\\mathrm Ces\\grave{a}ro\\)</span>-type operator <span>\\({\\mathcal {C}}_{\\mu ,s}\\)</span> on spaces of analytic functions in <span>\\({\\mathbb {D}}\\)</span>. We characterize the boundedness (compactness) of the <span>\\(\\mathrm Ces\\grave{a}ro\\)</span>-like operator <span>\\({\\mathcal {C}}_{\\mu ,s}\\)</span>, acting between the Bloch space <span>\\({\\mathcal {B}}\\)</span> and the Bergman space <span>\\(A^{p}\\)</span>.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cesàro-like operators between the Bloch space and Bergman spaces\",\"authors\":\"Yuting Guo,&nbsp;Pengcheng Tang,&nbsp;Xuejun Zhang\",\"doi\":\"10.1007/s43034-023-00309-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\({\\\\mathbb {D}}\\\\)</span> be the unit disc in the complex plane. Given a positive finite Borel measure <span>\\\\(\\\\mu \\\\)</span> on the radius [0, 1), we denote the <i>n</i>-th moment of <span>\\\\(\\\\mu \\\\)</span> as <span>\\\\(\\\\mu _{n}\\\\)</span>, that is, <span>\\\\(\\\\mu _{n}=\\\\int _{[0,1)}t^{n} \\\\textrm{d}\\\\mu (t).\\\\)</span> The Cesàro-like operator <span>\\\\({\\\\mathcal {C}}_{\\\\mu ,s}\\\\)</span> is defined on <span>\\\\(H({\\\\mathbb {D}})\\\\)</span> as follows: If <span>\\\\(f(z)=\\\\sum _{n=0}^{\\\\infty }a_{n}z^{n} \\\\in H({\\\\mathbb {D}} )\\\\)</span> then <span>\\\\({\\\\mathcal {C}}_{\\\\mu ,s}(f)\\\\)</span> is defined by </p><div><div><span>$$\\\\begin{aligned} {\\\\mathcal {C}}_{\\\\mu ,s}(f)(z)=\\\\sum _{n=0}^{\\\\infty }\\\\left( \\\\mu _{n} \\\\sum _{k=0}^{n}\\\\frac{\\\\Gamma (n-k+s)}{\\\\Gamma (s)(n-k)!}a_{k}\\\\right) z^{n},\\\\ \\\\ z\\\\in {\\\\mathbb {D}}. \\\\end{aligned}$$</span></div></div><p>In this paper, our focus is on the action of the <span>\\\\(\\\\mathrm Ces\\\\grave{a}ro\\\\)</span>-type operator <span>\\\\({\\\\mathcal {C}}_{\\\\mu ,s}\\\\)</span> on spaces of analytic functions in <span>\\\\({\\\\mathbb {D}}\\\\)</span>. We characterize the boundedness (compactness) of the <span>\\\\(\\\\mathrm Ces\\\\grave{a}ro\\\\)</span>-like operator <span>\\\\({\\\\mathcal {C}}_{\\\\mu ,s}\\\\)</span>, acting between the Bloch space <span>\\\\({\\\\mathcal {B}}\\\\)</span> and the Bergman space <span>\\\\(A^{p}\\\\)</span>.</p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-023-00309-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-023-00309-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 \({\mathbb {D}}\) 是复平面上的单位圆盘。给定半径[0, 1]上的正有限伯勒尔度量(\mu \),我们把(\mu \)的n-th矩表示为(\mu _{n}\),即(\(\mu _{n}=\int _{[0,1)}t^{n}\textrm{d}\mu (t).\)Cesàro-like 算子 \({\mathcal {C}}_{\mu ,s}\) 在 \(H({\mathbb {D}})\) 上定义如下:If \(f(z)=sum _{n=0}^{\infty }a_{n}z^{n}\那麼 \({\mathcal {C}}_{\mu ,s}(f)\) 的定義是 $$\begin{aligned} {\mathcal {C}}_{\mu ,s}(f)(z)=sum _{n=0}^{\infty }\left( \mu _{n})\sum _{k=0}^{n}\frac{Gamma (n-k+s)}{\Gamma (s)(n-k)!}a_{k}\right) z^{n},\ z\in {\mathbb {D}}.\end{aligned}$$ 在本文中,我们的重点是 \(\mathrm Ces\grave{a}ro) 型算子 \({\mathcal {C}}_{\mu ,s}\) 对 \({\mathbb {D}}) 中解析函数空间的作用。我们描述了作用于布洛赫空间(Bloch space)和伯格曼空间(Bergman space)之间的类似于(\mathrm Ces\grave{a}ro )的算子({\mathcal {C}_\{mu ,s})的有界性(紧凑性)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cesàro-like operators between the Bloch space and Bergman spaces

Let \({\mathbb {D}}\) be the unit disc in the complex plane. Given a positive finite Borel measure \(\mu \) on the radius [0, 1), we denote the n-th moment of \(\mu \) as \(\mu _{n}\), that is, \(\mu _{n}=\int _{[0,1)}t^{n} \textrm{d}\mu (t).\) The Cesàro-like operator \({\mathcal {C}}_{\mu ,s}\) is defined on \(H({\mathbb {D}})\) as follows: If \(f(z)=\sum _{n=0}^{\infty }a_{n}z^{n} \in H({\mathbb {D}} )\) then \({\mathcal {C}}_{\mu ,s}(f)\) is defined by

$$\begin{aligned} {\mathcal {C}}_{\mu ,s}(f)(z)=\sum _{n=0}^{\infty }\left( \mu _{n} \sum _{k=0}^{n}\frac{\Gamma (n-k+s)}{\Gamma (s)(n-k)!}a_{k}\right) z^{n},\ \ z\in {\mathbb {D}}. \end{aligned}$$

In this paper, our focus is on the action of the \(\mathrm Ces\grave{a}ro\)-type operator \({\mathcal {C}}_{\mu ,s}\) on spaces of analytic functions in \({\mathbb {D}}\). We characterize the boundedness (compactness) of the \(\mathrm Ces\grave{a}ro\)-like operator \({\mathcal {C}}_{\mu ,s}\), acting between the Bloch space \({\mathcal {B}}\) and the Bergman space \(A^{p}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信