木质原木栽培过程中的微生物群落特征

IF 2.2 3区 农林科学 Q2 FORESTRY
Fu-Chia Chen, Taichi Motoda, Ichiro Kamei, Yoshio Kijidani
{"title":"木质原木栽培过程中的微生物群落特征","authors":"Fu-Chia Chen, Taichi Motoda, Ichiro Kamei, Yoshio Kijidani","doi":"10.1186/s10086-023-02111-3","DOIUrl":null,"url":null,"abstract":"The method used to cultivate the popular Japanese mushroom Grifola frondosa (maitake), called 'wood log cultivation', comprised two steps: (1) the mycelium is grown around a wood log in a plastic bag, and (2) the mycelium that has spread on the wood log is transferred into casing substrates in a forest. This method is still popular in Japan due to its low cost and high-quality crop production. The importance of the microbiome that inhabits mushroom-cultivation surroundings has recently attracted attention, but no study of the microbial communities in maitake cultivation has been published. We investigated how the bacterial communities changed in wood logs in comparison with a control group (without inoculation) and their interaction with maitake during the first to fourth years of maitake wood log cultivation. A maitake biomass was detected by quantitative PCR in wood logs but not in the casings, and we thus decided to investigate the bacterial communities in wood log samples for control and first- to fourth-year cultivation. The results indicate that the phyla Proteobacteria, Firmicutes, and Gemmatimonadota play key roles in changes of the microbiome composition for maitake wood log cultivation. In a functional profile, bacteria communities in the wood logs during maitake cultivation showed higher relative abundance in cellulolysis, glycolysis, TCA cycle, and many biosynthesis pathways, whereas the control group showed higher relative abundance in fermentation. These results suggested that (i) the bacterial communities which inhabited maitake cultivated wood logs may help the maitake degrade wood cellulose, and (ii) part of the glucose from the cellulose degraded by both maitake and bacteria was used for the bacterial TCA cycle instead of fermentation. Bacteria also produce some chemicals that maitake mycelium may need. It is also likely that some potential intracellular parasites dwell with maitake. The different cultivation stages showed different network structures. A network analysis indicated that Class Gammaproteobacteria is a potential keystone taxon for the microbiome network stability of maitake cultivated wood logs. These results contribute to the understanding of the microbiome in maitake-cultivation surroundings and will improve maitake wood log cultivation.","PeriodicalId":17664,"journal":{"name":"Journal of Wood Science","volume":"4 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of microbial communities during Grifola frondosa (maitake) wood log cultivation\",\"authors\":\"Fu-Chia Chen, Taichi Motoda, Ichiro Kamei, Yoshio Kijidani\",\"doi\":\"10.1186/s10086-023-02111-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The method used to cultivate the popular Japanese mushroom Grifola frondosa (maitake), called 'wood log cultivation', comprised two steps: (1) the mycelium is grown around a wood log in a plastic bag, and (2) the mycelium that has spread on the wood log is transferred into casing substrates in a forest. This method is still popular in Japan due to its low cost and high-quality crop production. The importance of the microbiome that inhabits mushroom-cultivation surroundings has recently attracted attention, but no study of the microbial communities in maitake cultivation has been published. We investigated how the bacterial communities changed in wood logs in comparison with a control group (without inoculation) and their interaction with maitake during the first to fourth years of maitake wood log cultivation. A maitake biomass was detected by quantitative PCR in wood logs but not in the casings, and we thus decided to investigate the bacterial communities in wood log samples for control and first- to fourth-year cultivation. The results indicate that the phyla Proteobacteria, Firmicutes, and Gemmatimonadota play key roles in changes of the microbiome composition for maitake wood log cultivation. In a functional profile, bacteria communities in the wood logs during maitake cultivation showed higher relative abundance in cellulolysis, glycolysis, TCA cycle, and many biosynthesis pathways, whereas the control group showed higher relative abundance in fermentation. These results suggested that (i) the bacterial communities which inhabited maitake cultivated wood logs may help the maitake degrade wood cellulose, and (ii) part of the glucose from the cellulose degraded by both maitake and bacteria was used for the bacterial TCA cycle instead of fermentation. Bacteria also produce some chemicals that maitake mycelium may need. It is also likely that some potential intracellular parasites dwell with maitake. The different cultivation stages showed different network structures. A network analysis indicated that Class Gammaproteobacteria is a potential keystone taxon for the microbiome network stability of maitake cultivated wood logs. These results contribute to the understanding of the microbiome in maitake-cultivation surroundings and will improve maitake wood log cultivation.\",\"PeriodicalId\":17664,\"journal\":{\"name\":\"Journal of Wood Science\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wood Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1186/s10086-023-02111-3\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wood Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1186/s10086-023-02111-3","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

日本流行的蘑菇 Grifola frondosa(平菇)的栽培方法称为 "原木栽培",包括两个步骤:(1) 将菌丝放在塑料袋中的木头周围生长,(2) 将在木头上蔓延的菌丝转移到森林中的套管基质中。这种方法成本低、产量高,在日本仍然很受欢迎。最近,栖息在蘑菇栽培环境中的微生物群落的重要性引起了人们的关注,但有关香菇栽培过程中微生物群落的研究尚未发表。我们研究了在香菇原木栽培的第一年到第四年期间,与对照组(未接种)相比,原木中细菌群落的变化情况及其与香菇的相互作用。通过定量 PCR,我们在原木中检测到了香菇生物量,但在外壳中没有检测到,因此我们决定调查对照组和第一年至第四年栽培的原木样本中的细菌群落。结果表明,蛋白菌门、真菌门和革囊菌门在香菇原木栽培微生物群组成的变化中起着关键作用。在功能方面,麦冬栽培期间原木中的细菌群落在纤维素分解、糖酵解、TCA 循环和多种生物合成途径中表现出较高的相对丰度,而对照组则在发酵中表现出较高的相对丰度。这些结果表明:(i)栖息在麦冬栽培木原木上的细菌群落可能有助于麦冬降解木纤维素;(ii)麦冬和细菌降解的纤维素中的部分葡萄糖被用于细菌的 TCA 循环,而不是发酵。细菌也会产生一些香菇菌丝可能需要的化学物质。此外,一些潜在的胞内寄生虫也可能与麦冬共生。不同的栽培阶段显示出不同的网络结构。网络分析结果表明,伽马蛋白菌类是香菇栽培原木微生物组网络稳定性的潜在关键分类群。这些结果有助于了解香菇栽培环境中的微生物组,并将改善香菇原木的栽培。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of microbial communities during Grifola frondosa (maitake) wood log cultivation
The method used to cultivate the popular Japanese mushroom Grifola frondosa (maitake), called 'wood log cultivation', comprised two steps: (1) the mycelium is grown around a wood log in a plastic bag, and (2) the mycelium that has spread on the wood log is transferred into casing substrates in a forest. This method is still popular in Japan due to its low cost and high-quality crop production. The importance of the microbiome that inhabits mushroom-cultivation surroundings has recently attracted attention, but no study of the microbial communities in maitake cultivation has been published. We investigated how the bacterial communities changed in wood logs in comparison with a control group (without inoculation) and their interaction with maitake during the first to fourth years of maitake wood log cultivation. A maitake biomass was detected by quantitative PCR in wood logs but not in the casings, and we thus decided to investigate the bacterial communities in wood log samples for control and first- to fourth-year cultivation. The results indicate that the phyla Proteobacteria, Firmicutes, and Gemmatimonadota play key roles in changes of the microbiome composition for maitake wood log cultivation. In a functional profile, bacteria communities in the wood logs during maitake cultivation showed higher relative abundance in cellulolysis, glycolysis, TCA cycle, and many biosynthesis pathways, whereas the control group showed higher relative abundance in fermentation. These results suggested that (i) the bacterial communities which inhabited maitake cultivated wood logs may help the maitake degrade wood cellulose, and (ii) part of the glucose from the cellulose degraded by both maitake and bacteria was used for the bacterial TCA cycle instead of fermentation. Bacteria also produce some chemicals that maitake mycelium may need. It is also likely that some potential intracellular parasites dwell with maitake. The different cultivation stages showed different network structures. A network analysis indicated that Class Gammaproteobacteria is a potential keystone taxon for the microbiome network stability of maitake cultivated wood logs. These results contribute to the understanding of the microbiome in maitake-cultivation surroundings and will improve maitake wood log cultivation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Wood Science
Journal of Wood Science 工程技术-材料科学:纸与木材
CiteScore
5.40
自引率
10.30%
发文量
57
审稿时长
6 months
期刊介绍: The Journal of Wood Science is the official journal of the Japan Wood Research Society. This journal provides an international forum for the exchange of knowledge and the discussion of current issues in wood and its utilization. The journal publishes original articles on basic and applied research dealing with the science, technology, and engineering of wood, wood components, wood and wood-based products, and wood constructions. Articles concerned with pulp and paper, fiber resources from non-woody plants, wood-inhabiting insects and fungi, wood biomass, and environmental and ecological issues in forest products are also included. In addition to original articles, the journal publishes review articles on selected topics concerning wood science and related fields. The editors welcome the submission of manuscripts from any country.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信