关于爱因斯坦-克莱因-戈登系统的傅立叶分析:傅立叶常数的增长与衰减

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Athanasios Chatzikaleas
{"title":"关于爱因斯坦-克莱因-戈登系统的傅立叶分析:傅立叶常数的增长与衰减","authors":"Athanasios Chatzikaleas","doi":"10.1007/s00023-023-01393-z","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the <span>\\((1+3)\\)</span>-dimensional Einstein equations with negative cosmological constant coupled to a spherically symmetric, massless scalar field and study perturbations around the anti-de Sitter spacetime. We derive the resonant systems, pick out vanishing secular terms and discuss issues related to small divisors. Most importantly, we rigorously establish (sharp, in most of the cases) asymptotic behaviour for all the interaction coefficients. The latter is based on uniform estimates for the eigenfunctions associated to the linearized operator as well as on some oscillatory integrals.</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"25 6","pages":"3009 - 3079"},"PeriodicalIF":1.4000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00023-023-01393-z.pdf","citationCount":"0","resultStr":"{\"title\":\"On the Fourier Analysis of the Einstein–Klein–Gordon System: Growth and Decay of the Fourier Constants\",\"authors\":\"Athanasios Chatzikaleas\",\"doi\":\"10.1007/s00023-023-01393-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the <span>\\\\((1+3)\\\\)</span>-dimensional Einstein equations with negative cosmological constant coupled to a spherically symmetric, massless scalar field and study perturbations around the anti-de Sitter spacetime. We derive the resonant systems, pick out vanishing secular terms and discuss issues related to small divisors. Most importantly, we rigorously establish (sharp, in most of the cases) asymptotic behaviour for all the interaction coefficients. The latter is based on uniform estimates for the eigenfunctions associated to the linearized operator as well as on some oscillatory integrals.</p></div>\",\"PeriodicalId\":463,\"journal\":{\"name\":\"Annales Henri Poincaré\",\"volume\":\"25 6\",\"pages\":\"3009 - 3079\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00023-023-01393-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Poincaré\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00023-023-01393-z\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-023-01393-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了负宇宙常数与球对称无质量标量场耦合的((1+3))维爱因斯坦方程,并研究了反德西特时空周围的扰动。我们推导了共振系统,挑出了消失的世俗项,并讨论了与小除数有关的问题。最重要的是,我们严格确定了所有相互作用系数的渐近行为(在大多数情况下是尖锐的)。后者基于与线性化算子相关的特征函数的统一估计以及一些振荡积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Fourier Analysis of the Einstein–Klein–Gordon System: Growth and Decay of the Fourier Constants

We consider the \((1+3)\)-dimensional Einstein equations with negative cosmological constant coupled to a spherically symmetric, massless scalar field and study perturbations around the anti-de Sitter spacetime. We derive the resonant systems, pick out vanishing secular terms and discuss issues related to small divisors. Most importantly, we rigorously establish (sharp, in most of the cases) asymptotic behaviour for all the interaction coefficients. The latter is based on uniform estimates for the eigenfunctions associated to the linearized operator as well as on some oscillatory integrals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信