利用非参数非观测异质性同时对纵向半连续数据的发生和数量进行建模

Pub Date : 2023-12-09 DOI:10.1002/cjs.11801
Guohua Yan, Renjun Ma
{"title":"利用非参数非观测异质性同时对纵向半连续数据的发生和数量进行建模","authors":"Guohua Yan,&nbsp;Renjun Ma","doi":"10.1002/cjs.11801","DOIUrl":null,"url":null,"abstract":"<p>Semicontinuous data frequently occur in longitudinal studies. The popular two-part modelling approach deals with longitudinal semicontinuous data by analyzing the occurrence of positive values and the intensity of positive values separately; however, this separation may break down the natural sequence of semicontinuous data within a subject and destroy its serial dependence structure. In this article, we introduce a Tweedie compound Poisson mixed model to study the occurrence of positive values and the quantity of the semicontinuous response simultaneously. In our approach, covariate effects on the semicontinuous response are assessed directly. The correlation within a subject and the unobserved heterogeneity are incorporated with serially correlated nonparametric random effects. Our model unifies subject-specific and population-averaged interpretations. We illustrate the approach with applications to a Brief Symptom Inventory study and an infants' fluoride intake study.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling occurrence and quantity of longitudinal semicontinuous data simultaneously with nonparametric unobserved heterogeneity\",\"authors\":\"Guohua Yan,&nbsp;Renjun Ma\",\"doi\":\"10.1002/cjs.11801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Semicontinuous data frequently occur in longitudinal studies. The popular two-part modelling approach deals with longitudinal semicontinuous data by analyzing the occurrence of positive values and the intensity of positive values separately; however, this separation may break down the natural sequence of semicontinuous data within a subject and destroy its serial dependence structure. In this article, we introduce a Tweedie compound Poisson mixed model to study the occurrence of positive values and the quantity of the semicontinuous response simultaneously. In our approach, covariate effects on the semicontinuous response are assessed directly. The correlation within a subject and the unobserved heterogeneity are incorporated with serially correlated nonparametric random effects. Our model unifies subject-specific and population-averaged interpretations. We illustrate the approach with applications to a Brief Symptom Inventory study and an infants' fluoride intake study.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

半连续数据经常出现在纵向研究中。流行的两部分建模方法通过分别分析正值的出现和正值的强度来处理纵向半连续数据;然而,这种分离可能会打破半连续数据在一个研究对象中的自然序列,破坏其序列依赖结构。在本文中,我们引入了一个 Tweedie 复合泊松混合模型来同时研究正值的出现和半连续反应的数量。在我们的方法中,协变量对半连续反应的影响是直接评估的。受试者内部的相关性和未观察到的异质性被纳入了序列相关的非参数随机效应。我们的模型统一了特定受试者和人群平均的解释。我们将这一方法应用于一项简明症状量表研究和一项婴儿氟摄入量研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Modelling occurrence and quantity of longitudinal semicontinuous data simultaneously with nonparametric unobserved heterogeneity

Semicontinuous data frequently occur in longitudinal studies. The popular two-part modelling approach deals with longitudinal semicontinuous data by analyzing the occurrence of positive values and the intensity of positive values separately; however, this separation may break down the natural sequence of semicontinuous data within a subject and destroy its serial dependence structure. In this article, we introduce a Tweedie compound Poisson mixed model to study the occurrence of positive values and the quantity of the semicontinuous response simultaneously. In our approach, covariate effects on the semicontinuous response are assessed directly. The correlation within a subject and the unobserved heterogeneity are incorporated with serially correlated nonparametric random effects. Our model unifies subject-specific and population-averaged interpretations. We illustrate the approach with applications to a Brief Symptom Inventory study and an infants' fluoride intake study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信