Xiaolong Li, Wan Chen, Zhien Liu, Chihua Lu, Menglei Sun
{"title":"基于过滤-x最小均方差的主动噪声控制系统调查,重点是降低计算复杂性","authors":"Xiaolong Li, Wan Chen, Zhien Liu, Chihua Lu, Menglei Sun","doi":"10.1186/s13634-023-01088-x","DOIUrl":null,"url":null,"abstract":"<p>Active noise control (ANC) is gaining ever-increasing attention owing to its powerful ability to attenuate low-frequency noise. The computational complexity of an ANC system may directly affect its computational efficiency, control performance, and hardware costs. Therefore, the focus of this paper is mainly on discussing the development of ANC systems with emphasis on reducing computational complexity. The ANC systems are classified into two groups of narrowband and broadband systems. The computational complexity analysis is provided to show the computational merit of each system with respect to the conventional ANC systems. In addition, numerical simulations are performed to evaluate the convergence speed and noise reduction performance of the considered systems. The results show that, in the narrowband ANC systems, the LFE-NANC, CFX-NANC and BFX-NANC systems enjoy better overall performance in terms of the computational complexity, convergence speed and steady-state error, and in the broadband ANC systems, the DF-BANC system has the lowest computational complexity but cannot effectively attenuate the broadband noise with high spectral dynamics, whereas the DS-BANC and MDS-BANC systems can. This study provides in-depth insight into current typical low-complexity ANC systems.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"20 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A survey on filtered-x least mean square-based active noise control systems with emphasis on reducing computational complexity\",\"authors\":\"Xiaolong Li, Wan Chen, Zhien Liu, Chihua Lu, Menglei Sun\",\"doi\":\"10.1186/s13634-023-01088-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Active noise control (ANC) is gaining ever-increasing attention owing to its powerful ability to attenuate low-frequency noise. The computational complexity of an ANC system may directly affect its computational efficiency, control performance, and hardware costs. Therefore, the focus of this paper is mainly on discussing the development of ANC systems with emphasis on reducing computational complexity. The ANC systems are classified into two groups of narrowband and broadband systems. The computational complexity analysis is provided to show the computational merit of each system with respect to the conventional ANC systems. In addition, numerical simulations are performed to evaluate the convergence speed and noise reduction performance of the considered systems. The results show that, in the narrowband ANC systems, the LFE-NANC, CFX-NANC and BFX-NANC systems enjoy better overall performance in terms of the computational complexity, convergence speed and steady-state error, and in the broadband ANC systems, the DF-BANC system has the lowest computational complexity but cannot effectively attenuate the broadband noise with high spectral dynamics, whereas the DS-BANC and MDS-BANC systems can. This study provides in-depth insight into current typical low-complexity ANC systems.</p>\",\"PeriodicalId\":11816,\"journal\":{\"name\":\"EURASIP Journal on Advances in Signal Processing\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Advances in Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s13634-023-01088-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Advances in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13634-023-01088-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
A survey on filtered-x least mean square-based active noise control systems with emphasis on reducing computational complexity
Active noise control (ANC) is gaining ever-increasing attention owing to its powerful ability to attenuate low-frequency noise. The computational complexity of an ANC system may directly affect its computational efficiency, control performance, and hardware costs. Therefore, the focus of this paper is mainly on discussing the development of ANC systems with emphasis on reducing computational complexity. The ANC systems are classified into two groups of narrowband and broadband systems. The computational complexity analysis is provided to show the computational merit of each system with respect to the conventional ANC systems. In addition, numerical simulations are performed to evaluate the convergence speed and noise reduction performance of the considered systems. The results show that, in the narrowband ANC systems, the LFE-NANC, CFX-NANC and BFX-NANC systems enjoy better overall performance in terms of the computational complexity, convergence speed and steady-state error, and in the broadband ANC systems, the DF-BANC system has the lowest computational complexity but cannot effectively attenuate the broadband noise with high spectral dynamics, whereas the DS-BANC and MDS-BANC systems can. This study provides in-depth insight into current typical low-complexity ANC systems.
期刊介绍:
The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.