{"title":"穿刺表面和体积上的低膨胀伪阿诺索夫。","authors":"Shixuan Li","doi":"10.1007/s10711-023-00860-5","DOIUrl":null,"url":null,"abstract":"<p>For a pseudo-Anosov homeomorphism <i>f</i> on a closed surface of genus <span>\\(g\\ge 2\\)</span>, for which the entropy is on the order <span>\\(\\frac{1}{g}\\)</span> (the lowest possible order), Farb-Leininger-Margalit showed that the volume of the mapping torus is bounded, independent of <i>g</i>. We show that the analogous result fails for a surface of fixed genus <i>g</i> with <i>n</i> punctures, by constructing pseudo-Anosov homeomorphism with entropy of the minimal order <span>\\(\\frac{\\log n}{n}\\)</span>, and volume tending to infinity.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low dilatation pseudo-Anosovs on punctured surfaces and volume.\",\"authors\":\"Shixuan Li\",\"doi\":\"10.1007/s10711-023-00860-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a pseudo-Anosov homeomorphism <i>f</i> on a closed surface of genus <span>\\\\(g\\\\ge 2\\\\)</span>, for which the entropy is on the order <span>\\\\(\\\\frac{1}{g}\\\\)</span> (the lowest possible order), Farb-Leininger-Margalit showed that the volume of the mapping torus is bounded, independent of <i>g</i>. We show that the analogous result fails for a surface of fixed genus <i>g</i> with <i>n</i> punctures, by constructing pseudo-Anosov homeomorphism with entropy of the minimal order <span>\\\\(\\\\frac{\\\\log n}{n}\\\\)</span>, and volume tending to infinity.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-023-00860-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-023-00860-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
对于熵为 \(\frac{1}{g}\)阶(可能的最低阶)的封闭表面上的伪阿诺索夫同构 f,法布-莱宁格-马格利特(Farb-Leininger-Margalit)证明了映射环的体积是有界的,与 g 无关。我们通过构造熵为最小阶 \(\frac\{log n}{n}\)、体积趋于无穷大的伪阿诺索夫同构,证明了对于具有 n 个穿刺点的固定属g曲面,类似的结果是失败的。
Low dilatation pseudo-Anosovs on punctured surfaces and volume.
For a pseudo-Anosov homeomorphism f on a closed surface of genus \(g\ge 2\), for which the entropy is on the order \(\frac{1}{g}\) (the lowest possible order), Farb-Leininger-Margalit showed that the volume of the mapping torus is bounded, independent of g. We show that the analogous result fails for a surface of fixed genus g with n punctures, by constructing pseudo-Anosov homeomorphism with entropy of the minimal order \(\frac{\log n}{n}\), and volume tending to infinity.