一般惯性曼-哈尔彭算法和一般惯性曼算法的收敛结果

Solomon Gebregiorgis, Poom Kumam
{"title":"一般惯性曼-哈尔彭算法和一般惯性曼算法的收敛结果","authors":"Solomon Gebregiorgis, Poom Kumam","doi":"10.1186/s13663-023-00752-z","DOIUrl":null,"url":null,"abstract":"In this paper, we prove strong convergence theorem of the general inertial Mann–Halpern algorithm for nonexpansive mappings in the setting of Hilbert spaces. We also prove weak convergence theorem of the general inertial Mann algorithm for k-strict pseudo-contractive mappings in the setting of Hilbert spaces. These convergence results extend and generalize some existing results in the literature. Finally, we provide examples to verify our main results.","PeriodicalId":12293,"journal":{"name":"Fixed Point Theory and Applications","volume":"149 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence results on the general inertial Mann–Halpern and general inertial Mann algorithms\",\"authors\":\"Solomon Gebregiorgis, Poom Kumam\",\"doi\":\"10.1186/s13663-023-00752-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove strong convergence theorem of the general inertial Mann–Halpern algorithm for nonexpansive mappings in the setting of Hilbert spaces. We also prove weak convergence theorem of the general inertial Mann algorithm for k-strict pseudo-contractive mappings in the setting of Hilbert spaces. These convergence results extend and generalize some existing results in the literature. Finally, we provide examples to verify our main results.\",\"PeriodicalId\":12293,\"journal\":{\"name\":\"Fixed Point Theory and Applications\",\"volume\":\"149 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fixed Point Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13663-023-00752-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fixed Point Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13663-023-00752-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了在希尔伯特空间环境中针对非展开映射的一般惯性曼-哈尔帕恩算法的强收敛定理。我们还证明了在希尔伯特空间环境中 k 严格伪收缩映射的一般惯性 Mann 算法的弱收敛定理。这些收敛结果扩展和概括了文献中的一些现有结果。最后,我们举例验证了我们的主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence results on the general inertial Mann–Halpern and general inertial Mann algorithms
In this paper, we prove strong convergence theorem of the general inertial Mann–Halpern algorithm for nonexpansive mappings in the setting of Hilbert spaces. We also prove weak convergence theorem of the general inertial Mann algorithm for k-strict pseudo-contractive mappings in the setting of Hilbert spaces. These convergence results extend and generalize some existing results in the literature. Finally, we provide examples to verify our main results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fixed Point Theory and Applications
Fixed Point Theory and Applications MATHEMATICS, APPLIED-MATHEMATICS
自引率
0.00%
发文量
0
期刊介绍: In a wide range of mathematical, computational, economical, modeling and engineering problems, the existence of a solution to a theoretical or real world problem is equivalent to the existence of a fixed point for a suitable map or operator. Fixed points are therefore of paramount importance in many areas of mathematics, sciences and engineering. The theory itself is a beautiful mixture of analysis (pure and applied), topology and geometry. Over the last 60 years or so, the theory of fixed points has been revealed as a very powerful and important tool in the study of nonlinear phenomena. In particular, fixed point techniques have been applied in such diverse fields as biology, chemistry, physics, engineering, game theory and economics. In numerous cases finding the exact solution is not possible; hence it is necessary to develop appropriate algorithms to approximate the requested result. This is strongly related to control and optimization problems arising in the different sciences and in engineering problems. Many situations in the study of nonlinear equations, calculus of variations, partial differential equations, optimal control and inverse problems can be formulated in terms of fixed point problems or optimization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信