{"title":"离散元数值模拟参数设置数学模型","authors":"Song Qin, Haifei Lin, Shouguo Yang, Zongyong Wei","doi":"10.1007/s40789-023-00644-y","DOIUrl":null,"url":null,"abstract":"<p>To rationalize the setting of joint parameters, model size, and initial value of vertical stress in simulation of mining of steeply inclined coal seams, a fault tree analysis method of discrete element numerical simulation was used and a mathematical model was proposed. A method of eliminating the influences of size-effect errors on the parameters of coal and rock samples was obtained based on previous work. Furthermore, the constitutive equation and eigenvalue determination formula of a joint discontinuity surface were established, and a method of determination of the joint parameters was proposed, forming the complete “coupling chain” between parameters for numerical simulation. In addition, a formula for the initial value of vertical stress was constructed by way of the compression and shear model of the element body. Also, the minimum dimension was determined by means of strength factor analysis of fracture mechanics. Taking the research literature as an example, the model size and initial value of vertical stress were calculated. On this basis, the physical parameters of coal samples, the physical parameters of coal rocks considering the influence of the size effect and the calculated coal rock joint parameters considering the influence of size effect were directly used to comparatively analyze the displacement and stress fields, thus verifying the reasonability and correctness of the mathematical model.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mathematical model for parameter setting in discrete element numerical simulation\",\"authors\":\"Song Qin, Haifei Lin, Shouguo Yang, Zongyong Wei\",\"doi\":\"10.1007/s40789-023-00644-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To rationalize the setting of joint parameters, model size, and initial value of vertical stress in simulation of mining of steeply inclined coal seams, a fault tree analysis method of discrete element numerical simulation was used and a mathematical model was proposed. A method of eliminating the influences of size-effect errors on the parameters of coal and rock samples was obtained based on previous work. Furthermore, the constitutive equation and eigenvalue determination formula of a joint discontinuity surface were established, and a method of determination of the joint parameters was proposed, forming the complete “coupling chain” between parameters for numerical simulation. In addition, a formula for the initial value of vertical stress was constructed by way of the compression and shear model of the element body. Also, the minimum dimension was determined by means of strength factor analysis of fracture mechanics. Taking the research literature as an example, the model size and initial value of vertical stress were calculated. On this basis, the physical parameters of coal samples, the physical parameters of coal rocks considering the influence of the size effect and the calculated coal rock joint parameters considering the influence of size effect were directly used to comparatively analyze the displacement and stress fields, thus verifying the reasonability and correctness of the mathematical model.</p>\",\"PeriodicalId\":53469,\"journal\":{\"name\":\"International Journal of Coal Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Coal Science & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40789-023-00644-y\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coal Science & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40789-023-00644-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A mathematical model for parameter setting in discrete element numerical simulation
To rationalize the setting of joint parameters, model size, and initial value of vertical stress in simulation of mining of steeply inclined coal seams, a fault tree analysis method of discrete element numerical simulation was used and a mathematical model was proposed. A method of eliminating the influences of size-effect errors on the parameters of coal and rock samples was obtained based on previous work. Furthermore, the constitutive equation and eigenvalue determination formula of a joint discontinuity surface were established, and a method of determination of the joint parameters was proposed, forming the complete “coupling chain” between parameters for numerical simulation. In addition, a formula for the initial value of vertical stress was constructed by way of the compression and shear model of the element body. Also, the minimum dimension was determined by means of strength factor analysis of fracture mechanics. Taking the research literature as an example, the model size and initial value of vertical stress were calculated. On this basis, the physical parameters of coal samples, the physical parameters of coal rocks considering the influence of the size effect and the calculated coal rock joint parameters considering the influence of size effect were directly used to comparatively analyze the displacement and stress fields, thus verifying the reasonability and correctness of the mathematical model.
期刊介绍:
The International Journal of Coal Science & Technology is a peer-reviewed open access journal that focuses on key topics of coal scientific research and mining development. It serves as a forum for scientists to present research findings and discuss challenging issues in the field.
The journal covers a range of topics including coal geology, geochemistry, geophysics, mineralogy, and petrology. It also covers coal mining theory, technology, and engineering, as well as coal processing, utilization, and conversion. Additionally, the journal explores coal mining environment and reclamation, along with related aspects.
The International Journal of Coal Science & Technology is published with China Coal Society, who also cover the publication costs. This means that authors do not need to pay an article-processing charge.