有潜力的四元组的 K 理论霍尔代数的生成器

Tudor Pădurariu
{"title":"有潜力的四元组的 K 理论霍尔代数的生成器","authors":"Tudor Pădurariu","doi":"10.1007/s00029-023-00891-6","DOIUrl":null,"url":null,"abstract":"<p>K-theoretic Hall algebras (KHAs) of quivers with potential (<i>Q</i>, <i>W</i>) are a generalization of preprojective KHAs of quivers, which are conjecturally positive parts of the Okounkov–Smironov quantum affine algebras. In particular, preprojective KHAs are expected to satisfy a Poincaré–Birkhoff–Witt theorem. We construct semi-orthogonal decompositions of categorical Hall algebras using techniques developed by Halpern-Leistner, Ballard–Favero–Katzarkov, and Špenko–Van den Bergh. For a quotient of <span>\\(\\text {KHA}(Q,W)_{{\\mathbb {Q}}}\\)</span>, we refine these decompositions and prove a PBW-type theorem for it. The spaces of generators of <span>\\(\\text {KHA}(Q,0)_{{\\mathbb {Q}}}\\)</span> are given by (a version of) intersection K-theory of coarse moduli spaces of representations of <i>Q</i>.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"77 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Generators for K-theoretic Hall algebras of quivers with potential\",\"authors\":\"Tudor Pădurariu\",\"doi\":\"10.1007/s00029-023-00891-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>K-theoretic Hall algebras (KHAs) of quivers with potential (<i>Q</i>, <i>W</i>) are a generalization of preprojective KHAs of quivers, which are conjecturally positive parts of the Okounkov–Smironov quantum affine algebras. In particular, preprojective KHAs are expected to satisfy a Poincaré–Birkhoff–Witt theorem. We construct semi-orthogonal decompositions of categorical Hall algebras using techniques developed by Halpern-Leistner, Ballard–Favero–Katzarkov, and Špenko–Van den Bergh. For a quotient of <span>\\\\(\\\\text {KHA}(Q,W)_{{\\\\mathbb {Q}}}\\\\)</span>, we refine these decompositions and prove a PBW-type theorem for it. The spaces of generators of <span>\\\\(\\\\text {KHA}(Q,0)_{{\\\\mathbb {Q}}}\\\\)</span> are given by (a version of) intersection K-theory of coarse moduli spaces of representations of <i>Q</i>.</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-023-00891-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-023-00891-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

具有势(Q,W)的四元组的 K 理论霍尔代数(KHAs)是四元组的预投影 KHAs 的广义化,而预投影 KHAs 是奥孔科夫-斯米罗诺夫量子仿射代数的猜想正部分。前投影 KHAs 尤其有望满足 Poincaré-Birkhoff-Witt 定理。我们利用哈尔彭-莱斯特纳(Halpern-Leistner)、巴拉德-法维罗-卡扎科夫(Ballard-Favero-Katzarkov)和什彭科-范登贝格(Špenko-Van den Bergh)开发的技术,构建了分类霍尔代数的半正交分解。对于 \(text {KHA}(Q,W)_{{\mathbb {Q}}}) 的商,我们细化了这些分解,并证明了它的一个 PBW 型定理。\(text {KHA}(Q,0)_{\{mathbb {Q}}\) 的子空间是由 Q 的粗模空间的交 K 理论(的一个版本)给出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Generators for K-theoretic Hall algebras of quivers with potential

Generators for K-theoretic Hall algebras of quivers with potential

K-theoretic Hall algebras (KHAs) of quivers with potential (QW) are a generalization of preprojective KHAs of quivers, which are conjecturally positive parts of the Okounkov–Smironov quantum affine algebras. In particular, preprojective KHAs are expected to satisfy a Poincaré–Birkhoff–Witt theorem. We construct semi-orthogonal decompositions of categorical Hall algebras using techniques developed by Halpern-Leistner, Ballard–Favero–Katzarkov, and Špenko–Van den Bergh. For a quotient of \(\text {KHA}(Q,W)_{{\mathbb {Q}}}\), we refine these decompositions and prove a PBW-type theorem for it. The spaces of generators of \(\text {KHA}(Q,0)_{{\mathbb {Q}}}\) are given by (a version of) intersection K-theory of coarse moduli spaces of representations of Q.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信