Jin Luo, Yingming Li, Xiangrui Meng, Qingbiao Guo, Guangming Zhao
{"title":"松散层与断层耦合机制对矿区多物理场的影响","authors":"Jin Luo, Yingming Li, Xiangrui Meng, Qingbiao Guo, Guangming Zhao","doi":"10.1007/s40789-023-00640-2","DOIUrl":null,"url":null,"abstract":"<p>Coal mining under the geological conditions of a loose layer will lead to the intensification of surface movement and deformation, and mining under the geological conditions of a fault will lead to the living slip of a fault. Mining under both conditions will have a great impact on the safety of coal production. To reveal the evolution law of the coupling mechanism of loose layer and fault on the multi-physical fields of overburden, the numerical simulation method is used to simulate the coupling of loose layer and fault with different thicknesses, analyze the changes of vertical stress on the key strata, the changes of surface subsidence, the evolution of elastic energy on the fault zone and the changes of activated slip area of the fault zone. The simulation analysis shows that the vertical stress change trend of the key strata gradually changes from the \"V\" shape to the \"W\" shape at the beginning of mining, and the vertical stress concentration will occur at the fault. The loose layer will promote surface subsidence, and the fault will hinder the surface subsidence to a certain extent. The loose layer and the fault alternately affect the surface subsidence. The elastic energy accumulation on the key strata is mainly concentrated on both sides of the goaf. The elastic energy in the center of the goaf is dissipated. The elastic energy accumulation in the fault zone starts from the shallowly buried fault and gradually develops to the deeply buried fault. The instability of fault activation has gone through the initial stage of activation—the intensification stage of activation—the stable stage of activation. Under the working conditions of no loose layer, thin loose layer, and thick loose layer, the fault zone is the first to undergo living slip, and under the action of an extra-thick loose layer, there is a certain lag in the activation slip of the fault zone.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of coupling mechanism of loose layer and fault on multi-physical fields in mining areas\",\"authors\":\"Jin Luo, Yingming Li, Xiangrui Meng, Qingbiao Guo, Guangming Zhao\",\"doi\":\"10.1007/s40789-023-00640-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Coal mining under the geological conditions of a loose layer will lead to the intensification of surface movement and deformation, and mining under the geological conditions of a fault will lead to the living slip of a fault. Mining under both conditions will have a great impact on the safety of coal production. To reveal the evolution law of the coupling mechanism of loose layer and fault on the multi-physical fields of overburden, the numerical simulation method is used to simulate the coupling of loose layer and fault with different thicknesses, analyze the changes of vertical stress on the key strata, the changes of surface subsidence, the evolution of elastic energy on the fault zone and the changes of activated slip area of the fault zone. The simulation analysis shows that the vertical stress change trend of the key strata gradually changes from the \\\"V\\\" shape to the \\\"W\\\" shape at the beginning of mining, and the vertical stress concentration will occur at the fault. The loose layer will promote surface subsidence, and the fault will hinder the surface subsidence to a certain extent. The loose layer and the fault alternately affect the surface subsidence. The elastic energy accumulation on the key strata is mainly concentrated on both sides of the goaf. The elastic energy in the center of the goaf is dissipated. The elastic energy accumulation in the fault zone starts from the shallowly buried fault and gradually develops to the deeply buried fault. The instability of fault activation has gone through the initial stage of activation—the intensification stage of activation—the stable stage of activation. Under the working conditions of no loose layer, thin loose layer, and thick loose layer, the fault zone is the first to undergo living slip, and under the action of an extra-thick loose layer, there is a certain lag in the activation slip of the fault zone.</p>\",\"PeriodicalId\":53469,\"journal\":{\"name\":\"International Journal of Coal Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Coal Science & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40789-023-00640-2\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coal Science & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40789-023-00640-2","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Influence of coupling mechanism of loose layer and fault on multi-physical fields in mining areas
Coal mining under the geological conditions of a loose layer will lead to the intensification of surface movement and deformation, and mining under the geological conditions of a fault will lead to the living slip of a fault. Mining under both conditions will have a great impact on the safety of coal production. To reveal the evolution law of the coupling mechanism of loose layer and fault on the multi-physical fields of overburden, the numerical simulation method is used to simulate the coupling of loose layer and fault with different thicknesses, analyze the changes of vertical stress on the key strata, the changes of surface subsidence, the evolution of elastic energy on the fault zone and the changes of activated slip area of the fault zone. The simulation analysis shows that the vertical stress change trend of the key strata gradually changes from the "V" shape to the "W" shape at the beginning of mining, and the vertical stress concentration will occur at the fault. The loose layer will promote surface subsidence, and the fault will hinder the surface subsidence to a certain extent. The loose layer and the fault alternately affect the surface subsidence. The elastic energy accumulation on the key strata is mainly concentrated on both sides of the goaf. The elastic energy in the center of the goaf is dissipated. The elastic energy accumulation in the fault zone starts from the shallowly buried fault and gradually develops to the deeply buried fault. The instability of fault activation has gone through the initial stage of activation—the intensification stage of activation—the stable stage of activation. Under the working conditions of no loose layer, thin loose layer, and thick loose layer, the fault zone is the first to undergo living slip, and under the action of an extra-thick loose layer, there is a certain lag in the activation slip of the fault zone.
期刊介绍:
The International Journal of Coal Science & Technology is a peer-reviewed open access journal that focuses on key topics of coal scientific research and mining development. It serves as a forum for scientists to present research findings and discuss challenging issues in the field.
The journal covers a range of topics including coal geology, geochemistry, geophysics, mineralogy, and petrology. It also covers coal mining theory, technology, and engineering, as well as coal processing, utilization, and conversion. Additionally, the journal explores coal mining environment and reclamation, along with related aspects.
The International Journal of Coal Science & Technology is published with China Coal Society, who also cover the publication costs. This means that authors do not need to pay an article-processing charge.