松散层与断层耦合机制对矿区多物理场的影响

IF 6.9 1区 工程技术 Q2 ENERGY & FUELS
Jin Luo, Yingming Li, Xiangrui Meng, Qingbiao Guo, Guangming Zhao
{"title":"松散层与断层耦合机制对矿区多物理场的影响","authors":"Jin Luo, Yingming Li, Xiangrui Meng, Qingbiao Guo, Guangming Zhao","doi":"10.1007/s40789-023-00640-2","DOIUrl":null,"url":null,"abstract":"<p>Coal mining under the geological conditions of a loose layer will lead to the intensification of surface movement and deformation, and mining under the geological conditions of a fault will lead to the living slip of a fault. Mining under both conditions will have a great impact on the safety of coal production. To reveal the evolution law of the coupling mechanism of loose layer and fault on the multi-physical fields of overburden, the numerical simulation method is used to simulate the coupling of loose layer and fault with different thicknesses, analyze the changes of vertical stress on the key strata, the changes of surface subsidence, the evolution of elastic energy on the fault zone and the changes of activated slip area of the fault zone. The simulation analysis shows that the vertical stress change trend of the key strata gradually changes from the \"V\" shape to the \"W\" shape at the beginning of mining, and the vertical stress concentration will occur at the fault. The loose layer will promote surface subsidence, and the fault will hinder the surface subsidence to a certain extent. The loose layer and the fault alternately affect the surface subsidence. The elastic energy accumulation on the key strata is mainly concentrated on both sides of the goaf. The elastic energy in the center of the goaf is dissipated. The elastic energy accumulation in the fault zone starts from the shallowly buried fault and gradually develops to the deeply buried fault. The instability of fault activation has gone through the initial stage of activation—the intensification stage of activation—the stable stage of activation. Under the working conditions of no loose layer, thin loose layer, and thick loose layer, the fault zone is the first to undergo living slip, and under the action of an extra-thick loose layer, there is a certain lag in the activation slip of the fault zone.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of coupling mechanism of loose layer and fault on multi-physical fields in mining areas\",\"authors\":\"Jin Luo, Yingming Li, Xiangrui Meng, Qingbiao Guo, Guangming Zhao\",\"doi\":\"10.1007/s40789-023-00640-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Coal mining under the geological conditions of a loose layer will lead to the intensification of surface movement and deformation, and mining under the geological conditions of a fault will lead to the living slip of a fault. Mining under both conditions will have a great impact on the safety of coal production. To reveal the evolution law of the coupling mechanism of loose layer and fault on the multi-physical fields of overburden, the numerical simulation method is used to simulate the coupling of loose layer and fault with different thicknesses, analyze the changes of vertical stress on the key strata, the changes of surface subsidence, the evolution of elastic energy on the fault zone and the changes of activated slip area of the fault zone. The simulation analysis shows that the vertical stress change trend of the key strata gradually changes from the \\\"V\\\" shape to the \\\"W\\\" shape at the beginning of mining, and the vertical stress concentration will occur at the fault. The loose layer will promote surface subsidence, and the fault will hinder the surface subsidence to a certain extent. The loose layer and the fault alternately affect the surface subsidence. The elastic energy accumulation on the key strata is mainly concentrated on both sides of the goaf. The elastic energy in the center of the goaf is dissipated. The elastic energy accumulation in the fault zone starts from the shallowly buried fault and gradually develops to the deeply buried fault. The instability of fault activation has gone through the initial stage of activation—the intensification stage of activation—the stable stage of activation. Under the working conditions of no loose layer, thin loose layer, and thick loose layer, the fault zone is the first to undergo living slip, and under the action of an extra-thick loose layer, there is a certain lag in the activation slip of the fault zone.</p>\",\"PeriodicalId\":53469,\"journal\":{\"name\":\"International Journal of Coal Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Coal Science & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40789-023-00640-2\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coal Science & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40789-023-00640-2","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在松散层地质条件下采煤会导致地表运动变形加剧,在断层地质条件下采煤会导致断层活滑。两种条件下的开采都会对煤炭生产的安全产生很大影响。为揭示松散层与断层耦合机理对覆盖层多物理场的演化规律,采用数值模拟方法对不同厚度松散层与断层耦合进行模拟,分析关键地层垂直应力变化、地表沉降变化、断层带弹性能演化及断层带活化滑移面积变化。模拟分析表明,关键地层的垂直应力变化趋势由开采初期的 "V "形逐渐变为 "W "形,断层处将出现垂直应力集中。松散层会促进地表下沉,断层会在一定程度上阻碍地表下沉。松动层和断层交替影响地表下沉。关键地层上的弹性能量积聚主要集中在山麓两侧。鹅卵石中心的弹性能量被耗散。断层带的弹性能量积累从浅埋断层开始,逐渐向深埋断层发展。断层活化的不稳定性经历了活化初始阶段--活化加剧阶段--活化稳定阶段。在无松散层、薄松散层、厚松散层的作用条件下,断层带最先发生活化滑移,在特厚松散层的作用下,断层带的活化滑移有一定的滞后性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Influence of coupling mechanism of loose layer and fault on multi-physical fields in mining areas

Influence of coupling mechanism of loose layer and fault on multi-physical fields in mining areas

Coal mining under the geological conditions of a loose layer will lead to the intensification of surface movement and deformation, and mining under the geological conditions of a fault will lead to the living slip of a fault. Mining under both conditions will have a great impact on the safety of coal production. To reveal the evolution law of the coupling mechanism of loose layer and fault on the multi-physical fields of overburden, the numerical simulation method is used to simulate the coupling of loose layer and fault with different thicknesses, analyze the changes of vertical stress on the key strata, the changes of surface subsidence, the evolution of elastic energy on the fault zone and the changes of activated slip area of the fault zone. The simulation analysis shows that the vertical stress change trend of the key strata gradually changes from the "V" shape to the "W" shape at the beginning of mining, and the vertical stress concentration will occur at the fault. The loose layer will promote surface subsidence, and the fault will hinder the surface subsidence to a certain extent. The loose layer and the fault alternately affect the surface subsidence. The elastic energy accumulation on the key strata is mainly concentrated on both sides of the goaf. The elastic energy in the center of the goaf is dissipated. The elastic energy accumulation in the fault zone starts from the shallowly buried fault and gradually develops to the deeply buried fault. The instability of fault activation has gone through the initial stage of activation—the intensification stage of activation—the stable stage of activation. Under the working conditions of no loose layer, thin loose layer, and thick loose layer, the fault zone is the first to undergo living slip, and under the action of an extra-thick loose layer, there is a certain lag in the activation slip of the fault zone.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.40
自引率
8.40%
发文量
678
审稿时长
12 weeks
期刊介绍: The International Journal of Coal Science & Technology is a peer-reviewed open access journal that focuses on key topics of coal scientific research and mining development. It serves as a forum for scientists to present research findings and discuss challenging issues in the field. The journal covers a range of topics including coal geology, geochemistry, geophysics, mineralogy, and petrology. It also covers coal mining theory, technology, and engineering, as well as coal processing, utilization, and conversion. Additionally, the journal explores coal mining environment and reclamation, along with related aspects. The International Journal of Coal Science & Technology is published with China Coal Society, who also cover the publication costs. This means that authors do not need to pay an article-processing charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信