通过痕量函数计算扰动反函数的 c 微分均匀性 $$ {{\,\textrm{Tr}\,}}\big (\frac{x^2}{x+1}\big )$$

Pub Date : 2023-12-09 DOI:10.1007/s10998-023-00561-2
Kübra Kaytancı, Ferruh Özbudak
{"title":"通过痕量函数计算扰动反函数的 c 微分均匀性 $$ {{\\,\\textrm{Tr}\\,}}\\big (\\frac{x^2}{x+1}\\big )$$","authors":"Kübra Kaytancı, Ferruh Özbudak","doi":"10.1007/s10998-023-00561-2","DOIUrl":null,"url":null,"abstract":"<p>Differential uniformity is one of the most crucial concepts in cryptography. Recently Ellingsen et al. (IEEE Trans Inf Theory 66:5781–5789, 2020) introduced a new concept, the c-Difference Distribution Table and the c-differential uniformity, by extending the usual differential notion. The motivation behind this new concept is based on having the ability to resist some known differential attacks which is shown by Borisov et. al. (Multiplicative Differentials, 2002). In 2022, Hasan et al. (IEEE Trans Inf Theory 68:679–691, 2022) gave an upper bound of the c-differential uniformity of the perturbed inverse function <i>H</i> via a trace function <span>\\( {{\\,\\textrm{Tr}\\,}}\\big (\\frac{x^2}{x+1}\\big )\\)</span>. In their work, they also presented an open question on the exact c-differential uniformity of <i>H</i>. By using a new method based on algebraic curves over finite fields, we solve the open question in the case <span>\\( {{\\,\\textrm{Tr}\\,}}(c)=1= {{\\,\\textrm{Tr}\\,}}(\\frac{1}{c})\\)</span> for <span>\\( c \\in {\\mathbb {F}}_{2^n}\\setminus \\{0,1\\} \\)</span> completely and we show that the exact c-differential uniformity of <i>H</i> is 8. In the remaining case, we almost completely solve the problem and we show that the c-differential uniformity of <i>H</i> is either 8 or 9.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The c-differential uniformity of the perturbed inverse function via a trace function $$ {{\\\\,\\\\textrm{Tr}\\\\,}}\\\\big (\\\\frac{x^2}{x+1}\\\\big )$$\",\"authors\":\"Kübra Kaytancı, Ferruh Özbudak\",\"doi\":\"10.1007/s10998-023-00561-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Differential uniformity is one of the most crucial concepts in cryptography. Recently Ellingsen et al. (IEEE Trans Inf Theory 66:5781–5789, 2020) introduced a new concept, the c-Difference Distribution Table and the c-differential uniformity, by extending the usual differential notion. The motivation behind this new concept is based on having the ability to resist some known differential attacks which is shown by Borisov et. al. (Multiplicative Differentials, 2002). In 2022, Hasan et al. (IEEE Trans Inf Theory 68:679–691, 2022) gave an upper bound of the c-differential uniformity of the perturbed inverse function <i>H</i> via a trace function <span>\\\\( {{\\\\,\\\\textrm{Tr}\\\\,}}\\\\big (\\\\frac{x^2}{x+1}\\\\big )\\\\)</span>. In their work, they also presented an open question on the exact c-differential uniformity of <i>H</i>. By using a new method based on algebraic curves over finite fields, we solve the open question in the case <span>\\\\( {{\\\\,\\\\textrm{Tr}\\\\,}}(c)=1= {{\\\\,\\\\textrm{Tr}\\\\,}}(\\\\frac{1}{c})\\\\)</span> for <span>\\\\( c \\\\in {\\\\mathbb {F}}_{2^n}\\\\setminus \\\\{0,1\\\\} \\\\)</span> completely and we show that the exact c-differential uniformity of <i>H</i> is 8. In the remaining case, we almost completely solve the problem and we show that the c-differential uniformity of <i>H</i> is either 8 or 9.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10998-023-00561-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-023-00561-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

差分均匀性是密码学中最重要的概念之一。最近,Ellingsen 等人(IEEE Trans Inf Theory 66:5781-5789, 2020)通过扩展通常的差分概念,提出了一个新概念--c-差分分布表和 c-差分均匀性。Borisov 等人(《乘法差分》,2002 年)指出,这一新概念的动机是为了抵御一些已知的差分攻击。2022 年,Hasan 等人(IEEE Trans Inf Theory 68:679-691, 2022)通过迹函数 \( {{\,\textrm{Tr}\,}}\big (\frac{x^2}{x+1}\big )\)给出了扰动逆函数 H 的 c 微分均匀性的上界。在他们的工作中,还提出了一个关于 H 的精确 c 微分均匀性的未决问题。通过使用一种基于有限域上代数曲线的新方法,我们解决了 \( {{\,\textrm{Tr}\,}}(c)=1= {{\,\textrm{Tr}\、}}(\frac{1}{c})\) for \( c \ in {\mathbb {F}}_{2^n}setminus \{0,1\} \) 完全,并且我们证明了 H 的精确 c 微分均匀性是 8。在其余情况下,我们几乎完全解决了问题,并且证明了 H 的 c 微分均匀性是 8 或 9。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The c-differential uniformity of the perturbed inverse function via a trace function $$ {{\,\textrm{Tr}\,}}\big (\frac{x^2}{x+1}\big )$$

分享
查看原文
The c-differential uniformity of the perturbed inverse function via a trace function $$ {{\,\textrm{Tr}\,}}\big (\frac{x^2}{x+1}\big )$$

Differential uniformity is one of the most crucial concepts in cryptography. Recently Ellingsen et al. (IEEE Trans Inf Theory 66:5781–5789, 2020) introduced a new concept, the c-Difference Distribution Table and the c-differential uniformity, by extending the usual differential notion. The motivation behind this new concept is based on having the ability to resist some known differential attacks which is shown by Borisov et. al. (Multiplicative Differentials, 2002). In 2022, Hasan et al. (IEEE Trans Inf Theory 68:679–691, 2022) gave an upper bound of the c-differential uniformity of the perturbed inverse function H via a trace function \( {{\,\textrm{Tr}\,}}\big (\frac{x^2}{x+1}\big )\). In their work, they also presented an open question on the exact c-differential uniformity of H. By using a new method based on algebraic curves over finite fields, we solve the open question in the case \( {{\,\textrm{Tr}\,}}(c)=1= {{\,\textrm{Tr}\,}}(\frac{1}{c})\) for \( c \in {\mathbb {F}}_{2^n}\setminus \{0,1\} \) completely and we show that the exact c-differential uniformity of H is 8. In the remaining case, we almost completely solve the problem and we show that the c-differential uniformity of H is either 8 or 9.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信