广义弱半紧密和 S 半紧密线性关系及其谱特性

Pub Date : 2023-12-08 DOI:10.1007/s11253-023-02261-z
Majed Fakhfakh, Aref Jeribi
{"title":"广义弱半紧密和 S 半紧密线性关系及其谱特性","authors":"Majed Fakhfakh, Aref Jeribi","doi":"10.1007/s11253-023-02261-z","DOIUrl":null,"url":null,"abstract":"<p>We extend the concept of generalized weakly demicompact and relatively weakly demicompact operators on linear relations and present some outstanding results. Moreover, we address the theory of Fredholm and upper semi-Fredholm relations and make an attempt to establish connections with these operators.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Weakly Demicompact and S-Demicompact Linear Relations and Their Spectral Properties\",\"authors\":\"Majed Fakhfakh, Aref Jeribi\",\"doi\":\"10.1007/s11253-023-02261-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We extend the concept of generalized weakly demicompact and relatively weakly demicompact operators on linear relations and present some outstanding results. Moreover, we address the theory of Fredholm and upper semi-Fredholm relations and make an attempt to establish connections with these operators.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-023-02261-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-023-02261-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们扩展了线性关系上的广义弱反迫和相对弱反迫算子的概念,并提出了一些突出的结果。此外,我们还讨论了弗雷德霍姆关系和上半弗雷德霍姆关系理论,并尝试与这些算子建立联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Generalized Weakly Demicompact and S-Demicompact Linear Relations and Their Spectral Properties

We extend the concept of generalized weakly demicompact and relatively weakly demicompact operators on linear relations and present some outstanding results. Moreover, we address the theory of Fredholm and upper semi-Fredholm relations and make an attempt to establish connections with these operators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信