{"title":"论多项式对离散数据的最佳 p-norm 近似值","authors":"Michael S Floater","doi":"10.1093/imanum/drad086","DOIUrl":null,"url":null,"abstract":"In this note, we derive a solution to the problem of finding a polynomial of degree at most $n$ that best approximates data at $n+2$ points in the $l_{p}$ norm. Analogous to a result of de la Vallée Poussin, one can express the solution as a convex combination of the Lagrange interpolants over subsets of $n+1$ points, and the error oscillates in sign.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"7 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On best p-norm approximation of discrete data by polynomials\",\"authors\":\"Michael S Floater\",\"doi\":\"10.1093/imanum/drad086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note, we derive a solution to the problem of finding a polynomial of degree at most $n$ that best approximates data at $n+2$ points in the $l_{p}$ norm. Analogous to a result of de la Vallée Poussin, one can express the solution as a convex combination of the Lagrange interpolants over subsets of $n+1$ points, and the error oscillates in sign.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/drad086\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drad086","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
在本论文中,我们推导出了一个问题的解决方案,即找到一个度数最多为 $n$ 的多项式,该多项式在 $l_{p}$ 准则下最接近 $n+2$ 点的数据。与 de la Vallée Poussin 的一个结果类似,我们可以将解表示为 $n+1$ 点子集上的拉格朗日内插值的凸组合,并且误差在符号上摆动。
On best p-norm approximation of discrete data by polynomials
In this note, we derive a solution to the problem of finding a polynomial of degree at most $n$ that best approximates data at $n+2$ points in the $l_{p}$ norm. Analogous to a result of de la Vallée Poussin, one can express the solution as a convex combination of the Lagrange interpolants over subsets of $n+1$ points, and the error oscillates in sign.
期刊介绍:
The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.