{"title":"混合母线接头在使用和高压条件下的电气性能","authors":"G.R. Prieto , J.P.M. Pragana , R.F.V. Sampaio , I.M.F. Bragança , C.M.A. Silva , P.A.F. Martins","doi":"10.1016/j.jajp.2023.100169","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is focused on hybrid busbar joints with a twofold objective of understanding the differences in electrical resistance under service conditions and evaluating their performance when subjected to hazardous high voltages. Three different types of joints fabricated by conventional bolting, friction stir spot welding and injection lap riveting are selected and two different experimental setups are used to allow the hybrid busbars to be tested up to high voltage electrical discharges of 30 kV. The work is an enhancement of previous experimental and numerical investigations of the authors in the field with results showing no signs of damage or catastrophic failure when the different types of busbars are subjected to high voltage electrical discharges. Results also confirm the good overall performance and advantages of injection lap riveted hybrid busbar joints against bolted and friction stir spot welded.</p></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666330923000316/pdfft?md5=618c195c2edfa5bdfb611a4745257a17&pid=1-s2.0-S2666330923000316-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Electric performance of hybrid busbar joints under service and high voltage conditions\",\"authors\":\"G.R. Prieto , J.P.M. Pragana , R.F.V. Sampaio , I.M.F. Bragança , C.M.A. Silva , P.A.F. Martins\",\"doi\":\"10.1016/j.jajp.2023.100169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is focused on hybrid busbar joints with a twofold objective of understanding the differences in electrical resistance under service conditions and evaluating their performance when subjected to hazardous high voltages. Three different types of joints fabricated by conventional bolting, friction stir spot welding and injection lap riveting are selected and two different experimental setups are used to allow the hybrid busbars to be tested up to high voltage electrical discharges of 30 kV. The work is an enhancement of previous experimental and numerical investigations of the authors in the field with results showing no signs of damage or catastrophic failure when the different types of busbars are subjected to high voltage electrical discharges. Results also confirm the good overall performance and advantages of injection lap riveted hybrid busbar joints against bolted and friction stir spot welded.</p></div>\",\"PeriodicalId\":34313,\"journal\":{\"name\":\"Journal of Advanced Joining Processes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666330923000316/pdfft?md5=618c195c2edfa5bdfb611a4745257a17&pid=1-s2.0-S2666330923000316-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Joining Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666330923000316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330923000316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Electric performance of hybrid busbar joints under service and high voltage conditions
This paper is focused on hybrid busbar joints with a twofold objective of understanding the differences in electrical resistance under service conditions and evaluating their performance when subjected to hazardous high voltages. Three different types of joints fabricated by conventional bolting, friction stir spot welding and injection lap riveting are selected and two different experimental setups are used to allow the hybrid busbars to be tested up to high voltage electrical discharges of 30 kV. The work is an enhancement of previous experimental and numerical investigations of the authors in the field with results showing no signs of damage or catastrophic failure when the different types of busbars are subjected to high voltage electrical discharges. Results also confirm the good overall performance and advantages of injection lap riveted hybrid busbar joints against bolted and friction stir spot welded.