对脊柱关节炎患者维生素 D 水平进行机器学习分类

Luis Ángel Calvo Pascual , David Castro Corredor , Eduardo César Garrido Merchán
{"title":"对脊柱关节炎患者维生素 D 水平进行机器学习分类","authors":"Luis Ángel Calvo Pascual ,&nbsp;David Castro Corredor ,&nbsp;Eduardo César Garrido Merchán","doi":"10.1016/j.ibmed.2023.100125","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>Predict the 25 dihydroxy 20 epi vitamin d3 level (low, medium, or high) in spondyloarthritis patients.</p></div><div><h3>Methods</h3><p>Observational, descriptive, and cross-sectional study. We collected information from 115 patients. From a total of 32 variables, we selected the most relevant using mutual information tests, and, finally, we estimated two classification models using machine learning.</p></div><div><h3>Result</h3><p>We obtain an interpretable decision tree and an ensemble maximizing the expected accuracy using Bayesian optimization and 10-fold cross-validation over a preprocessed dataset.</p></div><div><h3>Conclusion</h3><p>We identify relevant variables not considered in previous research, such as age and post-treatment. We also estimate more flexible and high-capacity models using advanced data science techniques.</p></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"9 ","pages":"Article 100125"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266652122300039X/pdfft?md5=5a755d50c23cbe6f7d801f6f56e92a1e&pid=1-s2.0-S266652122300039X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Machine learning classification of vitamin D levels in spondyloarthritis patients\",\"authors\":\"Luis Ángel Calvo Pascual ,&nbsp;David Castro Corredor ,&nbsp;Eduardo César Garrido Merchán\",\"doi\":\"10.1016/j.ibmed.2023.100125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><p>Predict the 25 dihydroxy 20 epi vitamin d3 level (low, medium, or high) in spondyloarthritis patients.</p></div><div><h3>Methods</h3><p>Observational, descriptive, and cross-sectional study. We collected information from 115 patients. From a total of 32 variables, we selected the most relevant using mutual information tests, and, finally, we estimated two classification models using machine learning.</p></div><div><h3>Result</h3><p>We obtain an interpretable decision tree and an ensemble maximizing the expected accuracy using Bayesian optimization and 10-fold cross-validation over a preprocessed dataset.</p></div><div><h3>Conclusion</h3><p>We identify relevant variables not considered in previous research, such as age and post-treatment. We also estimate more flexible and high-capacity models using advanced data science techniques.</p></div>\",\"PeriodicalId\":73399,\"journal\":{\"name\":\"Intelligence-based medicine\",\"volume\":\"9 \",\"pages\":\"Article 100125\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266652122300039X/pdfft?md5=5a755d50c23cbe6f7d801f6f56e92a1e&pid=1-s2.0-S266652122300039X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence-based medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266652122300039X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266652122300039X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的预测脊柱关节炎患者的 25 二羟基 20 表维生素 d3 水平(低、中或高)。 方法观察性、描述性和横断面研究。我们收集了 115 名患者的信息。结果我们获得了一棵可解释的决策树,并通过贝叶斯优化和对预处理数据集进行 10 倍交叉验证,获得了预期准确率最大化的集合。我们还利用先进的数据科学技术估算出了更灵活、容量更大的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning classification of vitamin D levels in spondyloarthritis patients

Objectives

Predict the 25 dihydroxy 20 epi vitamin d3 level (low, medium, or high) in spondyloarthritis patients.

Methods

Observational, descriptive, and cross-sectional study. We collected information from 115 patients. From a total of 32 variables, we selected the most relevant using mutual information tests, and, finally, we estimated two classification models using machine learning.

Result

We obtain an interpretable decision tree and an ensemble maximizing the expected accuracy using Bayesian optimization and 10-fold cross-validation over a preprocessed dataset.

Conclusion

We identify relevant variables not considered in previous research, such as age and post-treatment. We also estimate more flexible and high-capacity models using advanced data science techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信