Luis Ángel Calvo Pascual , David Castro Corredor , Eduardo César Garrido Merchán
{"title":"对脊柱关节炎患者维生素 D 水平进行机器学习分类","authors":"Luis Ángel Calvo Pascual , David Castro Corredor , Eduardo César Garrido Merchán","doi":"10.1016/j.ibmed.2023.100125","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>Predict the 25 dihydroxy 20 epi vitamin d3 level (low, medium, or high) in spondyloarthritis patients.</p></div><div><h3>Methods</h3><p>Observational, descriptive, and cross-sectional study. We collected information from 115 patients. From a total of 32 variables, we selected the most relevant using mutual information tests, and, finally, we estimated two classification models using machine learning.</p></div><div><h3>Result</h3><p>We obtain an interpretable decision tree and an ensemble maximizing the expected accuracy using Bayesian optimization and 10-fold cross-validation over a preprocessed dataset.</p></div><div><h3>Conclusion</h3><p>We identify relevant variables not considered in previous research, such as age and post-treatment. We also estimate more flexible and high-capacity models using advanced data science techniques.</p></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"9 ","pages":"Article 100125"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266652122300039X/pdfft?md5=5a755d50c23cbe6f7d801f6f56e92a1e&pid=1-s2.0-S266652122300039X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Machine learning classification of vitamin D levels in spondyloarthritis patients\",\"authors\":\"Luis Ángel Calvo Pascual , David Castro Corredor , Eduardo César Garrido Merchán\",\"doi\":\"10.1016/j.ibmed.2023.100125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><p>Predict the 25 dihydroxy 20 epi vitamin d3 level (low, medium, or high) in spondyloarthritis patients.</p></div><div><h3>Methods</h3><p>Observational, descriptive, and cross-sectional study. We collected information from 115 patients. From a total of 32 variables, we selected the most relevant using mutual information tests, and, finally, we estimated two classification models using machine learning.</p></div><div><h3>Result</h3><p>We obtain an interpretable decision tree and an ensemble maximizing the expected accuracy using Bayesian optimization and 10-fold cross-validation over a preprocessed dataset.</p></div><div><h3>Conclusion</h3><p>We identify relevant variables not considered in previous research, such as age and post-treatment. We also estimate more flexible and high-capacity models using advanced data science techniques.</p></div>\",\"PeriodicalId\":73399,\"journal\":{\"name\":\"Intelligence-based medicine\",\"volume\":\"9 \",\"pages\":\"Article 100125\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266652122300039X/pdfft?md5=5a755d50c23cbe6f7d801f6f56e92a1e&pid=1-s2.0-S266652122300039X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence-based medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266652122300039X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266652122300039X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine learning classification of vitamin D levels in spondyloarthritis patients
Objectives
Predict the 25 dihydroxy 20 epi vitamin d3 level (low, medium, or high) in spondyloarthritis patients.
Methods
Observational, descriptive, and cross-sectional study. We collected information from 115 patients. From a total of 32 variables, we selected the most relevant using mutual information tests, and, finally, we estimated two classification models using machine learning.
Result
We obtain an interpretable decision tree and an ensemble maximizing the expected accuracy using Bayesian optimization and 10-fold cross-validation over a preprocessed dataset.
Conclusion
We identify relevant variables not considered in previous research, such as age and post-treatment. We also estimate more flexible and high-capacity models using advanced data science techniques.