城市快速路的车道级短期行驶速度预测:贴心的时空深度学习方法

IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Keshuang Tang, Siqu Chen, Yumin Cao, Di Zang, Jian Sun
{"title":"城市快速路的车道级短期行驶速度预测:贴心的时空深度学习方法","authors":"Keshuang Tang,&nbsp;Siqu Chen,&nbsp;Yumin Cao,&nbsp;Di Zang,&nbsp;Jian Sun","doi":"10.1049/itr2.12464","DOIUrl":null,"url":null,"abstract":"<p>Numerous efforts have been made to address the section-level travel speed prediction problem. However, section-level predictions can hardly be used for fine-grained applications, such as lane management and lane-level navigation. The main reason for this is that significant speed heterogeneity exists among the lanes within one section. Thus, this study proposes a three-dimensional (3D) dual attention convolution-based deep learning model for predicting the lane-level travel speed. 3D convolutions are designed to learn high-dimensional spatiotemporal traffic flow features, that is, the relationships between different sections, lanes, and periods. Dual attention modules are used to focus on the traffic flow propagation patterns and to explain the model's mechanisms. To evaluate the proposed model, an indicator is introduced to assess the spatio-temporal learning ability, based on targeting the lane-level case. Evaluation experiments are conducted based on loop detector data in Shanghai, China. The results show that high accuracy is obtained by the proposed model, with a 2.9 km/h mean absolute error, thereby outperforming several existing methods. Finally, an in-depth analysis is provided regarding the attention coefficients and interpretation of real-world lane-level traffic flow propagation patterns, so as to gain insights into the model's mechanism when capturing dynamic lane-level traffic flow.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12464","citationCount":"0","resultStr":"{\"title\":\"Lane-level short-term travel speed prediction for urban expressways: An attentive spatio-temporal deep learning approach\",\"authors\":\"Keshuang Tang,&nbsp;Siqu Chen,&nbsp;Yumin Cao,&nbsp;Di Zang,&nbsp;Jian Sun\",\"doi\":\"10.1049/itr2.12464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Numerous efforts have been made to address the section-level travel speed prediction problem. However, section-level predictions can hardly be used for fine-grained applications, such as lane management and lane-level navigation. The main reason for this is that significant speed heterogeneity exists among the lanes within one section. Thus, this study proposes a three-dimensional (3D) dual attention convolution-based deep learning model for predicting the lane-level travel speed. 3D convolutions are designed to learn high-dimensional spatiotemporal traffic flow features, that is, the relationships between different sections, lanes, and periods. Dual attention modules are used to focus on the traffic flow propagation patterns and to explain the model's mechanisms. To evaluate the proposed model, an indicator is introduced to assess the spatio-temporal learning ability, based on targeting the lane-level case. Evaluation experiments are conducted based on loop detector data in Shanghai, China. The results show that high accuracy is obtained by the proposed model, with a 2.9 km/h mean absolute error, thereby outperforming several existing methods. Finally, an in-depth analysis is provided regarding the attention coefficients and interpretation of real-world lane-level traffic flow propagation patterns, so as to gain insights into the model's mechanism when capturing dynamic lane-level traffic flow.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12464\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12464\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12464","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

为解决路段级行驶速度预测问题,人们做出了许多努力。然而,路段级预测很难用于细粒度应用,如车道管理和车道级导航。其主要原因是,一个路段内的车道之间存在明显的速度异质性。因此,本研究提出了一种基于三维(3D)双注意卷积的深度学习模型,用于预测车道级行驶速度。三维卷积旨在学习高维时空交通流特征,即不同路段、车道和时段之间的关系。双重关注模块用于关注交通流传播模式并解释模型的机制。为了评估所提出的模型,引入了一个指标来评估时空学习能力,该指标以车道级情况为目标。评估实验基于中国上海的环路检测器数据。结果表明,提出的模型获得了较高的准确度,平均绝对误差为 2.9 km/h,从而优于现有的几种方法。最后,还深入分析了关注系数和实际车道级交通流传播模式的解释,从而深入了解模型捕捉动态车道级交通流的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lane-level short-term travel speed prediction for urban expressways: An attentive spatio-temporal deep learning approach

Lane-level short-term travel speed prediction for urban expressways: An attentive spatio-temporal deep learning approach

Lane-level short-term travel speed prediction for urban expressways: An attentive spatio-temporal deep learning approach

Numerous efforts have been made to address the section-level travel speed prediction problem. However, section-level predictions can hardly be used for fine-grained applications, such as lane management and lane-level navigation. The main reason for this is that significant speed heterogeneity exists among the lanes within one section. Thus, this study proposes a three-dimensional (3D) dual attention convolution-based deep learning model for predicting the lane-level travel speed. 3D convolutions are designed to learn high-dimensional spatiotemporal traffic flow features, that is, the relationships between different sections, lanes, and periods. Dual attention modules are used to focus on the traffic flow propagation patterns and to explain the model's mechanisms. To evaluate the proposed model, an indicator is introduced to assess the spatio-temporal learning ability, based on targeting the lane-level case. Evaluation experiments are conducted based on loop detector data in Shanghai, China. The results show that high accuracy is obtained by the proposed model, with a 2.9 km/h mean absolute error, thereby outperforming several existing methods. Finally, an in-depth analysis is provided regarding the attention coefficients and interpretation of real-world lane-level traffic flow propagation patterns, so as to gain insights into the model's mechanism when capturing dynamic lane-level traffic flow.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Intelligent Transport Systems
IET Intelligent Transport Systems 工程技术-运输科技
CiteScore
6.50
自引率
7.40%
发文量
159
审稿时长
3 months
期刊介绍: IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following: Sustainable traffic solutions Deployments with enabling technologies Pervasive monitoring Applications; demonstrations and evaluation Economic and behavioural analyses of ITS services and scenario Data Integration and analytics Information collection and processing; image processing applications in ITS ITS aspects of electric vehicles Autonomous vehicles; connected vehicle systems; In-vehicle ITS, safety and vulnerable road user aspects Mobility as a service systems Traffic management and control Public transport systems technologies Fleet and public transport logistics Emergency and incident management Demand management and electronic payment systems Traffic related air pollution management Policy and institutional issues Interoperability, standards and architectures Funding scenarios Enforcement Human machine interaction Education, training and outreach Current Special Issue Call for papers: Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信