{"title":"奇异亚线性椭圆问题的最小 Lp 解","authors":"Aye Chan May, Adisak Seesanea","doi":"10.1016/j.rinam.2023.100421","DOIUrl":null,"url":null,"abstract":"<div><p>We solve the existence problem for the minimal positive solutions <span><math><mrow><mi>u</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>d</mi><mi>x</mi><mo>)</mo></mrow></mrow></math></span> to the Dirichlet problems for sublinear elliptic equations of the form <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><mi>L</mi><mi>u</mi><mo>=</mo><mi>σ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>+</mo><mi>μ</mi><mspace></mspace><mspace></mspace><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><munder><mrow><mo>lim inf</mo></mrow><mrow><mi>x</mi><mo>→</mo><mi>y</mi></mrow></munder><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mspace></mspace><mi>y</mi><mo>∈</mo><msub><mrow><mi>∂</mi></mrow><mrow><mi>∞</mi></mrow></msub><mi>Ω</mi><mo>,</mo><mspace></mspace></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>where <span><math><mrow><mn>0</mn><mo><</mo><mi>q</mi><mo><</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>L</mi><mi>u</mi><mo>≔</mo><mo>−</mo><mtext>div</mtext><mrow><mo>(</mo><mi>A</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>∇</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> is a linear uniformly elliptic operator with bounded measurable coefficients. The coefficient <span><math><mi>σ</mi></math></span> and data <span><math><mi>μ</mi></math></span> are nonnegative Radon measures on an arbitrary domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> with a positive Green function associated with <span><math><mi>L</mi></math></span>. Our techniques are based on the use of sharp Green potential pointwise estimates, weighted norm inequalities, and norm estimates in terms of generalized energy.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"21 ","pages":"Article 100421"},"PeriodicalIF":1.4000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037423000675/pdfft?md5=1b91146774605839478a2da41f82a505&pid=1-s2.0-S2590037423000675-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Minimal Lp-solutions to singular sublinear elliptic problems\",\"authors\":\"Aye Chan May, Adisak Seesanea\",\"doi\":\"10.1016/j.rinam.2023.100421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We solve the existence problem for the minimal positive solutions <span><math><mrow><mi>u</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>d</mi><mi>x</mi><mo>)</mo></mrow></mrow></math></span> to the Dirichlet problems for sublinear elliptic equations of the form <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><mi>L</mi><mi>u</mi><mo>=</mo><mi>σ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>+</mo><mi>μ</mi><mspace></mspace><mspace></mspace><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><munder><mrow><mo>lim inf</mo></mrow><mrow><mi>x</mi><mo>→</mo><mi>y</mi></mrow></munder><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mspace></mspace><mi>y</mi><mo>∈</mo><msub><mrow><mi>∂</mi></mrow><mrow><mi>∞</mi></mrow></msub><mi>Ω</mi><mo>,</mo><mspace></mspace></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>where <span><math><mrow><mn>0</mn><mo><</mo><mi>q</mi><mo><</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>L</mi><mi>u</mi><mo>≔</mo><mo>−</mo><mtext>div</mtext><mrow><mo>(</mo><mi>A</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>∇</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> is a linear uniformly elliptic operator with bounded measurable coefficients. The coefficient <span><math><mi>σ</mi></math></span> and data <span><math><mi>μ</mi></math></span> are nonnegative Radon measures on an arbitrary domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> with a positive Green function associated with <span><math><mi>L</mi></math></span>. Our techniques are based on the use of sharp Green potential pointwise estimates, weighted norm inequalities, and norm estimates in terms of generalized energy.</p></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"21 \",\"pages\":\"Article 100421\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590037423000675/pdfft?md5=1b91146774605839478a2da41f82a505&pid=1-s2.0-S2590037423000675-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037423000675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037423000675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Minimal Lp-solutions to singular sublinear elliptic problems
We solve the existence problem for the minimal positive solutions to the Dirichlet problems for sublinear elliptic equations of the form where and is a linear uniformly elliptic operator with bounded measurable coefficients. The coefficient and data are nonnegative Radon measures on an arbitrary domain with a positive Green function associated with . Our techniques are based on the use of sharp Green potential pointwise estimates, weighted norm inequalities, and norm estimates in terms of generalized energy.