奇异亚线性椭圆问题的最小 Lp 解

IF 1.4 Q2 MATHEMATICS, APPLIED
Aye Chan May, Adisak Seesanea
{"title":"奇异亚线性椭圆问题的最小 Lp 解","authors":"Aye Chan May,&nbsp;Adisak Seesanea","doi":"10.1016/j.rinam.2023.100421","DOIUrl":null,"url":null,"abstract":"<div><p>We solve the existence problem for the minimal positive solutions <span><math><mrow><mi>u</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>d</mi><mi>x</mi><mo>)</mo></mrow></mrow></math></span> to the Dirichlet problems for sublinear elliptic equations of the form <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><mi>L</mi><mi>u</mi><mo>=</mo><mi>σ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>+</mo><mi>μ</mi><mspace></mspace><mspace></mspace><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><munder><mrow><mo>lim inf</mo></mrow><mrow><mi>x</mi><mo>→</mo><mi>y</mi></mrow></munder><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mspace></mspace><mi>y</mi><mo>∈</mo><msub><mrow><mi>∂</mi></mrow><mrow><mi>∞</mi></mrow></msub><mi>Ω</mi><mo>,</mo><mspace></mspace></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>where <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>q</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>L</mi><mi>u</mi><mo>≔</mo><mo>−</mo><mtext>div</mtext><mrow><mo>(</mo><mi>A</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>∇</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> is a linear uniformly elliptic operator with bounded measurable coefficients. The coefficient <span><math><mi>σ</mi></math></span> and data <span><math><mi>μ</mi></math></span> are nonnegative Radon measures on an arbitrary domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> with a positive Green function associated with <span><math><mi>L</mi></math></span>. Our techniques are based on the use of sharp Green potential pointwise estimates, weighted norm inequalities, and norm estimates in terms of generalized energy.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"21 ","pages":"Article 100421"},"PeriodicalIF":1.4000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037423000675/pdfft?md5=1b91146774605839478a2da41f82a505&pid=1-s2.0-S2590037423000675-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Minimal Lp-solutions to singular sublinear elliptic problems\",\"authors\":\"Aye Chan May,&nbsp;Adisak Seesanea\",\"doi\":\"10.1016/j.rinam.2023.100421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We solve the existence problem for the minimal positive solutions <span><math><mrow><mi>u</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>d</mi><mi>x</mi><mo>)</mo></mrow></mrow></math></span> to the Dirichlet problems for sublinear elliptic equations of the form <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><mi>L</mi><mi>u</mi><mo>=</mo><mi>σ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>+</mo><mi>μ</mi><mspace></mspace><mspace></mspace><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><munder><mrow><mo>lim inf</mo></mrow><mrow><mi>x</mi><mo>→</mo><mi>y</mi></mrow></munder><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mspace></mspace><mi>y</mi><mo>∈</mo><msub><mrow><mi>∂</mi></mrow><mrow><mi>∞</mi></mrow></msub><mi>Ω</mi><mo>,</mo><mspace></mspace></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>where <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>q</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>L</mi><mi>u</mi><mo>≔</mo><mo>−</mo><mtext>div</mtext><mrow><mo>(</mo><mi>A</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>∇</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> is a linear uniformly elliptic operator with bounded measurable coefficients. The coefficient <span><math><mi>σ</mi></math></span> and data <span><math><mi>μ</mi></math></span> are nonnegative Radon measures on an arbitrary domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> with a positive Green function associated with <span><math><mi>L</mi></math></span>. Our techniques are based on the use of sharp Green potential pointwise estimates, weighted norm inequalities, and norm estimates in terms of generalized energy.</p></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"21 \",\"pages\":\"Article 100421\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590037423000675/pdfft?md5=1b91146774605839478a2da41f82a505&pid=1-s2.0-S2590037423000675-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037423000675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037423000675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们求解了形式为 Lu=σuq+μinΩ,lim infx→yu(x)=0y∈∂∞Ω 的亚线性椭圆方程的 Dirichlet 问题的最小正解 u∈Lp(Ω,dx) 的存在性问题,其中 0<;q<1,Lu≔-div(A(x)∇u)是线性均匀椭圆算子,系数有界可测。系数 σ 和数据 μ 是任意域 Ω⊂Rn 上的非负 Radon 度量,具有与 L 相关的正格林函数。我们的技术基于使用尖锐的格林势点估计、加权规范不等式和广义能量的规范估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimal Lp-solutions to singular sublinear elliptic problems

We solve the existence problem for the minimal positive solutions uLp(Ω,dx) to the Dirichlet problems for sublinear elliptic equations of the form Lu=σuq+μinΩ,lim infxyu(x)=0yΩ,where 0<q<1 and Ludiv(A(x)u) is a linear uniformly elliptic operator with bounded measurable coefficients. The coefficient σ and data μ are nonnegative Radon measures on an arbitrary domain ΩRn with a positive Green function associated with L. Our techniques are based on the use of sharp Green potential pointwise estimates, weighted norm inequalities, and norm estimates in terms of generalized energy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信