{"title":"卡勒卡拉比尤流形上具有全态连接的主束","authors":"Indranil Biswas , Sorin Dumitrescu","doi":"10.1016/j.difgeo.2023.102093","DOIUrl":null,"url":null,"abstract":"<div><p><span>We prove that any holomorphic vector bundle admitting a holomorphic connection, over a compact Kähler Calabi-Yau manifold, also admits a flat holomorphic connection. This addresses a particular case of a question asked by Atiyah and generalizes a result previously obtained in </span><span>[6]</span> for simply connected compact Kähler Calabi-Yau manifolds. We give some applications of it in the framework of Cartan geometries and foliated Cartan geometries on Kähler Calabi-Yau manifolds.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Principal bundles with holomorphic connections over a Kähler Calabi-Yau manifold\",\"authors\":\"Indranil Biswas , Sorin Dumitrescu\",\"doi\":\"10.1016/j.difgeo.2023.102093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We prove that any holomorphic vector bundle admitting a holomorphic connection, over a compact Kähler Calabi-Yau manifold, also admits a flat holomorphic connection. This addresses a particular case of a question asked by Atiyah and generalizes a result previously obtained in </span><span>[6]</span> for simply connected compact Kähler Calabi-Yau manifolds. We give some applications of it in the framework of Cartan geometries and foliated Cartan geometries on Kähler Calabi-Yau manifolds.</p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224523001195\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224523001195","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Principal bundles with holomorphic connections over a Kähler Calabi-Yau manifold
We prove that any holomorphic vector bundle admitting a holomorphic connection, over a compact Kähler Calabi-Yau manifold, also admits a flat holomorphic connection. This addresses a particular case of a question asked by Atiyah and generalizes a result previously obtained in [6] for simply connected compact Kähler Calabi-Yau manifolds. We give some applications of it in the framework of Cartan geometries and foliated Cartan geometries on Kähler Calabi-Yau manifolds.
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.