卡勒卡拉比尤流形上具有全态连接的主束

IF 0.6 4区 数学 Q3 MATHEMATICS
Indranil Biswas , Sorin Dumitrescu
{"title":"卡勒卡拉比尤流形上具有全态连接的主束","authors":"Indranil Biswas ,&nbsp;Sorin Dumitrescu","doi":"10.1016/j.difgeo.2023.102093","DOIUrl":null,"url":null,"abstract":"<div><p><span>We prove that any holomorphic vector bundle admitting a holomorphic connection, over a compact Kähler Calabi-Yau manifold, also admits a flat holomorphic connection. This addresses a particular case of a question asked by Atiyah and generalizes a result previously obtained in </span><span>[6]</span> for simply connected compact Kähler Calabi-Yau manifolds. We give some applications of it in the framework of Cartan geometries and foliated Cartan geometries on Kähler Calabi-Yau manifolds.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"92 ","pages":"Article 102093"},"PeriodicalIF":0.6000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Principal bundles with holomorphic connections over a Kähler Calabi-Yau manifold\",\"authors\":\"Indranil Biswas ,&nbsp;Sorin Dumitrescu\",\"doi\":\"10.1016/j.difgeo.2023.102093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We prove that any holomorphic vector bundle admitting a holomorphic connection, over a compact Kähler Calabi-Yau manifold, also admits a flat holomorphic connection. This addresses a particular case of a question asked by Atiyah and generalizes a result previously obtained in </span><span>[6]</span> for simply connected compact Kähler Calabi-Yau manifolds. We give some applications of it in the framework of Cartan geometries and foliated Cartan geometries on Kähler Calabi-Yau manifolds.</p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"92 \",\"pages\":\"Article 102093\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224523001195\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224523001195","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,在紧凑的凯勒卡拉比优流形上,任何容许全形连接的全形向量束也容许平全形连接。这解决了阿蒂亚所提问题的一个特殊情况,并推广了之前在[6]中针对简单连接的紧凑凯勒卡拉比优流形得到的结果。我们给出了它在 Kähler Calabi-Yau 流形上的 Cartan 几何图形和叶状 Cartan 几何图形框架中的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Principal bundles with holomorphic connections over a Kähler Calabi-Yau manifold

We prove that any holomorphic vector bundle admitting a holomorphic connection, over a compact Kähler Calabi-Yau manifold, also admits a flat holomorphic connection. This addresses a particular case of a question asked by Atiyah and generalizes a result previously obtained in [6] for simply connected compact Kähler Calabi-Yau manifolds. We give some applications of it in the framework of Cartan geometries and foliated Cartan geometries on Kähler Calabi-Yau manifolds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信