准空间、其微分分析以及在格林量子化中的应用

Ruibin Zhang
{"title":"准空间、其微分分析以及在格林量子化中的应用","authors":"Ruibin Zhang","doi":"arxiv-2312.04250","DOIUrl":null,"url":null,"abstract":"We introduce a class of non-commutative geometries, loosely referred to as\npara-spaces, which are manifolds equipped with sheaves of non-commutative\nalgebras called para-algebras. A differential analysis on para-spaces is\ninvestigated, which is reminiscent of that on super manifolds and can be\nreadily applied to model physical problems, for example, by using para-space\nanalogues of differential equations. Two families of examples, the affine\npara-spaces $\\mathbb{K}^{m|n}(p)$ and para-projective spaces\n$\\mathbb{KP}^{m|n}(p)$, with $\\mathbb{K}$ being $\\mathbb{R}$ and $\\mathbb{C}$,\nare treated in detail for all positive integers $p$. As an application of such\nnon-commutative geometries, we interpret Green's theory of parafermions in\nterms of para-spaces on a point. Other potential applications in quantum field\ntheory are also commented upon.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Para-spaces, their differential analysis and an application to Green's quantisation\",\"authors\":\"Ruibin Zhang\",\"doi\":\"arxiv-2312.04250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a class of non-commutative geometries, loosely referred to as\\npara-spaces, which are manifolds equipped with sheaves of non-commutative\\nalgebras called para-algebras. A differential analysis on para-spaces is\\ninvestigated, which is reminiscent of that on super manifolds and can be\\nreadily applied to model physical problems, for example, by using para-space\\nanalogues of differential equations. Two families of examples, the affine\\npara-spaces $\\\\mathbb{K}^{m|n}(p)$ and para-projective spaces\\n$\\\\mathbb{KP}^{m|n}(p)$, with $\\\\mathbb{K}$ being $\\\\mathbb{R}$ and $\\\\mathbb{C}$,\\nare treated in detail for all positive integers $p$. As an application of such\\nnon-commutative geometries, we interpret Green's theory of parafermions in\\nterms of para-spaces on a point. Other potential applications in quantum field\\ntheory are also commented upon.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.04250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.04250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一类非交换几何,可宽泛地称为准空间,它们是配备有称为准代数的非交换代数的流形。我们对准空间的微分分析进行了研究,它让人想起超流形的微分分析,并且可以方便地应用于物理问题的建模,例如,通过使用微分方程的准空间模拟。对于所有正整数 $p$,我们详细讨论了两个系列的例子:affinepara-spaces $\mathbb{K}^{m|n}(p)$ 和 para-projective spaces $\mathbb{KP}^{m|n}(p)$ ,其中 $\mathbb{K}$ 是 $\mathbb{R}$ 和 $\mathbb{C}$ 。作为这种非交换几何的一种应用,我们用点上的对位空间来解释格林的对位费米子理论。我们还评论了量子场论中的其他潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Para-spaces, their differential analysis and an application to Green's quantisation
We introduce a class of non-commutative geometries, loosely referred to as para-spaces, which are manifolds equipped with sheaves of non-commutative algebras called para-algebras. A differential analysis on para-spaces is investigated, which is reminiscent of that on super manifolds and can be readily applied to model physical problems, for example, by using para-space analogues of differential equations. Two families of examples, the affine para-spaces $\mathbb{K}^{m|n}(p)$ and para-projective spaces $\mathbb{KP}^{m|n}(p)$, with $\mathbb{K}$ being $\mathbb{R}$ and $\mathbb{C}$, are treated in detail for all positive integers $p$. As an application of such non-commutative geometries, we interpret Green's theory of parafermions in terms of para-spaces on a point. Other potential applications in quantum field theory are also commented upon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信