里德-穆勒码在容量以下误码概率消失:通过山茶花提升的简单严密证明

Emmanuel Abbe, Colin Sandon
{"title":"里德-穆勒码在容量以下误码概率消失:通过山茶花提升的简单严密证明","authors":"Emmanuel Abbe, Colin Sandon","doi":"arxiv-2312.04329","DOIUrl":null,"url":null,"abstract":"This paper shows that a class of codes such as Reed-Muller (RM) codes have\nvanishing bit-error probability below capacity on symmetric channels. The proof\nrelies on the notion of `camellia codes': a class of symmetric codes\ndecomposable into `camellias', i.e., set systems that differ from sunflowers by\nallowing for scattered petal overlaps. The proof then follows from a boosting\nargument on the camellia petals with second moment Fourier analysis. For\nerasure channels, this gives a self-contained proof of the bit-error result in\nKudekar et al.'17, without relying on sharp thresholds for monotone properties\nFriedgut-Kalai'96. For error channels, this gives a shortened proof of\nReeves-Pfister'23 with an exponentially tighter bound, and a proof variant of\nthe bit-error result in Abbe-Sandon'23. The control of the full (block) error\nprobability still requires Abbe-Sandon'23 for RM codes.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"103 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reed-Muller codes have vanishing bit-error probability below capacity: a simple tighter proof via camellia boosting\",\"authors\":\"Emmanuel Abbe, Colin Sandon\",\"doi\":\"arxiv-2312.04329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper shows that a class of codes such as Reed-Muller (RM) codes have\\nvanishing bit-error probability below capacity on symmetric channels. The proof\\nrelies on the notion of `camellia codes': a class of symmetric codes\\ndecomposable into `camellias', i.e., set systems that differ from sunflowers by\\nallowing for scattered petal overlaps. The proof then follows from a boosting\\nargument on the camellia petals with second moment Fourier analysis. For\\nerasure channels, this gives a self-contained proof of the bit-error result in\\nKudekar et al.'17, without relying on sharp thresholds for monotone properties\\nFriedgut-Kalai'96. For error channels, this gives a shortened proof of\\nReeves-Pfister'23 with an exponentially tighter bound, and a proof variant of\\nthe bit-error result in Abbe-Sandon'23. The control of the full (block) error\\nprobability still requires Abbe-Sandon'23 for RM codes.\",\"PeriodicalId\":501433,\"journal\":{\"name\":\"arXiv - CS - Information Theory\",\"volume\":\"103 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.04329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.04329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了在对称信道上,里德-穆勒(Reed-Muller,RM)码等一类码的比特误码率低于容量。证明依赖于 "山茶花码 "的概念:一类对称码可分解为 "山茶花",即不同于向日葵的集合系统,允许分散的花瓣重叠。然后,通过对山茶花花瓣的提升论证和第二矩傅里叶分析来进行证明。对于误差信道,这给出了库德卡尔等人'17 的比特误差结果的自足证明,而无需依赖单调特性弗里德古特-卡莱'96 的尖锐阈值。对于误差信道,这给出了里夫斯-菲斯特(Reeves-Pfister'23)的简短证明和指数级紧缩约束,以及阿贝-桑顿(Abbe-Sandon'23)的比特误差结果的证明变体。对于 RM 码,全(块)错误概率的控制仍然需要 Abbe-Sandon'23 的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reed-Muller codes have vanishing bit-error probability below capacity: a simple tighter proof via camellia boosting
This paper shows that a class of codes such as Reed-Muller (RM) codes have vanishing bit-error probability below capacity on symmetric channels. The proof relies on the notion of `camellia codes': a class of symmetric codes decomposable into `camellias', i.e., set systems that differ from sunflowers by allowing for scattered petal overlaps. The proof then follows from a boosting argument on the camellia petals with second moment Fourier analysis. For erasure channels, this gives a self-contained proof of the bit-error result in Kudekar et al.'17, without relying on sharp thresholds for monotone properties Friedgut-Kalai'96. For error channels, this gives a shortened proof of Reeves-Pfister'23 with an exponentially tighter bound, and a proof variant of the bit-error result in Abbe-Sandon'23. The control of the full (block) error probability still requires Abbe-Sandon'23 for RM codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信