{"title":"使用离散涡流法建立非稳态变形机翼的不粘性模型","authors":"Alfonso Martínez-Carmena, Kiran Ramesh","doi":"10.1007/s00162-023-00678-7","DOIUrl":null,"url":null,"abstract":"<p>A low-order physics-based model to simulate the unsteady flow response to airfoils undergoing large-amplitude variations of the camber is presented in this paper. Potential-flow theory adapted for unsteady airfoils and numerical methods using discrete-vortex elements are combined to obtain rapid predictions of flow behavior and force evolution. To elude the inherent restriction of thin-airfoil theory to small flow disturbances, a time-varying chord line is proposed in this work over which to satisfy the appropriate boundary condition, enabling large deformations of the camber line to be modeled. Computational fluid dynamics simulations are performed to assess the accuracy of the low-order model for a wide range of dynamic trailing-edge flap deflections. By allowing the chord line to rotate with trailing-edge deflections, aerodynamic loads predictions are greatly enhanced as compared to the classical approach where the chord line is fixed. This is especially evident for large-amplitude deformations.</p>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"38 6","pages":"845 - 862"},"PeriodicalIF":2.2000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00162-023-00678-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Inviscid modeling of unsteady morphing airfoils using a discrete-vortex method\",\"authors\":\"Alfonso Martínez-Carmena, Kiran Ramesh\",\"doi\":\"10.1007/s00162-023-00678-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A low-order physics-based model to simulate the unsteady flow response to airfoils undergoing large-amplitude variations of the camber is presented in this paper. Potential-flow theory adapted for unsteady airfoils and numerical methods using discrete-vortex elements are combined to obtain rapid predictions of flow behavior and force evolution. To elude the inherent restriction of thin-airfoil theory to small flow disturbances, a time-varying chord line is proposed in this work over which to satisfy the appropriate boundary condition, enabling large deformations of the camber line to be modeled. Computational fluid dynamics simulations are performed to assess the accuracy of the low-order model for a wide range of dynamic trailing-edge flap deflections. By allowing the chord line to rotate with trailing-edge deflections, aerodynamic loads predictions are greatly enhanced as compared to the classical approach where the chord line is fixed. This is especially evident for large-amplitude deformations.</p>\",\"PeriodicalId\":795,\"journal\":{\"name\":\"Theoretical and Computational Fluid Dynamics\",\"volume\":\"38 6\",\"pages\":\"845 - 862\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00162-023-00678-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Computational Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00162-023-00678-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00162-023-00678-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Inviscid modeling of unsteady morphing airfoils using a discrete-vortex method
A low-order physics-based model to simulate the unsteady flow response to airfoils undergoing large-amplitude variations of the camber is presented in this paper. Potential-flow theory adapted for unsteady airfoils and numerical methods using discrete-vortex elements are combined to obtain rapid predictions of flow behavior and force evolution. To elude the inherent restriction of thin-airfoil theory to small flow disturbances, a time-varying chord line is proposed in this work over which to satisfy the appropriate boundary condition, enabling large deformations of the camber line to be modeled. Computational fluid dynamics simulations are performed to assess the accuracy of the low-order model for a wide range of dynamic trailing-edge flap deflections. By allowing the chord line to rotate with trailing-edge deflections, aerodynamic loads predictions are greatly enhanced as compared to the classical approach where the chord line is fixed. This is especially evident for large-amplitude deformations.
期刊介绍:
Theoretical and Computational Fluid Dynamics provides a forum for the cross fertilization of ideas, tools and techniques across all disciplines in which fluid flow plays a role. The focus is on aspects of fluid dynamics where theory and computation are used to provide insights and data upon which solid physical understanding is revealed. We seek research papers, invited review articles, brief communications, letters and comments addressing flow phenomena of relevance to aeronautical, geophysical, environmental, material, mechanical and life sciences. Papers of a purely algorithmic, experimental or engineering application nature, and papers without significant new physical insights, are outside the scope of this journal. For computational work, authors are responsible for ensuring that any artifacts of discretization and/or implementation are sufficiently controlled such that the numerical results unambiguously support the conclusions drawn. Where appropriate, and to the extent possible, such papers should either include or reference supporting documentation in the form of verification and validation studies.