重新审视枚举复杂性

Alexander Shekhovtsov, Georgii Zakharov
{"title":"重新审视枚举复杂性","authors":"Alexander Shekhovtsov, Georgii Zakharov","doi":"arxiv-2312.04187","DOIUrl":null,"url":null,"abstract":"We reduce the best-known upper bound on the length of a program that\nenumerates a set in terms of the probability of it being enumerated by a random\nprogram. We prove a general result that any linear upper bound for finite sets\nimplies the same linear bound for infinite sets. So far, the best-known upper bound was given by Solovay. He showed that the\nminimum length of a program enumerating a subset $S$ of natural numbers is\nbounded by minus three binary logarithms of the probability that a random\nprogram will enumerate $S$. Later, Vereshchagin showed that the constant can be\nimproved from three to two for finite sets. In this work, using an improvement\nof the method proposed by Solovay, we demonstrate that any bound for finite\nsets implies the same for infinite sets, modulo logarithmic factors. Using\nVereshchagin's result, we improve the current best-known upper bound from three\nto two.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enumerating Complexity Revisited\",\"authors\":\"Alexander Shekhovtsov, Georgii Zakharov\",\"doi\":\"arxiv-2312.04187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We reduce the best-known upper bound on the length of a program that\\nenumerates a set in terms of the probability of it being enumerated by a random\\nprogram. We prove a general result that any linear upper bound for finite sets\\nimplies the same linear bound for infinite sets. So far, the best-known upper bound was given by Solovay. He showed that the\\nminimum length of a program enumerating a subset $S$ of natural numbers is\\nbounded by minus three binary logarithms of the probability that a random\\nprogram will enumerate $S$. Later, Vereshchagin showed that the constant can be\\nimproved from three to two for finite sets. In this work, using an improvement\\nof the method proposed by Solovay, we demonstrate that any bound for finite\\nsets implies the same for infinite sets, modulo logarithmic factors. Using\\nVereshchagin's result, we improve the current best-known upper bound from three\\nto two.\",\"PeriodicalId\":501433,\"journal\":{\"name\":\"arXiv - CS - Information Theory\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.04187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.04187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们用一个随机程序枚举一个集合的概率,还原了最著名的枚举集合程序长度上界。我们证明了一个一般性结果,即任何有限集的线性上界都意味着无限集的相同线性上界。迄今为止,最著名的上界是索洛维给出的。他证明了枚举自然数子集 $S$ 的程序的最小长度与随机程序枚举 $S$ 的概率的减三二进制对数成界。后来,韦列沙金证明,对于有限集,这个常数可以从三个改进为两个。在这项工作中,我们利用索洛维提出的方法的改进,证明了有限集的任何界限都意味着无限集也是如此,模数为对数因子。利用韦列施恰金的结果,我们把目前最著名的上界从三改进为二。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enumerating Complexity Revisited
We reduce the best-known upper bound on the length of a program that enumerates a set in terms of the probability of it being enumerated by a random program. We prove a general result that any linear upper bound for finite sets implies the same linear bound for infinite sets. So far, the best-known upper bound was given by Solovay. He showed that the minimum length of a program enumerating a subset $S$ of natural numbers is bounded by minus three binary logarithms of the probability that a random program will enumerate $S$. Later, Vereshchagin showed that the constant can be improved from three to two for finite sets. In this work, using an improvement of the method proposed by Solovay, we demonstrate that any bound for finite sets implies the same for infinite sets, modulo logarithmic factors. Using Vereshchagin's result, we improve the current best-known upper bound from three to two.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信