关于各向同性 $$\alpha $$ 稳定随机过程的单层势、伪梯度和跳跃定理

IF 0.9 3区 数学 Q2 MATHEMATICS
Khrystyna Mamalyha, Mykhailo Osypchuk
{"title":"关于各向同性 $$\\alpha $$ 稳定随机过程的单层势、伪梯度和跳跃定理","authors":"Khrystyna Mamalyha, Mykhailo Osypchuk","doi":"10.1007/s11868-023-00574-y","DOIUrl":null,"url":null,"abstract":"<p>The aim of this paper is a behavior investigation of pseudo-gradients with respect to the spatial variable of a single-layer potential if the spatial point tends to some point in the carrier surface of the potential. The potentials connect to the generator of an isotropic <span>\\(\\alpha \\)</span>-stable stochastic process with the power <span>\\(\\alpha \\in (1,2]\\)</span>. This generator is the fractional Laplacian of the order <span>\\(\\alpha \\)</span>. Pseudo-gradient or fractional gradient is the pseudo-differential operator of the gradient type. Its order <span>\\(\\beta \\)</span> is a positive number less than <span>\\(\\alpha \\)</span>. The jump theorem is known in the case of <span>\\(\\beta =\\alpha -1\\)</span>. We present here the corresponding results in the cases of <span>\\(\\beta &lt;\\alpha -1\\)</span> and <span>\\(\\beta &gt;\\alpha -1\\)</span>. In the first case there are no jumps, and in the second case there are no finite limits of the fractional gradients of the single-layer potential, when the spatial argument tends to some point placed on the potential carrier.\n</p>","PeriodicalId":48793,"journal":{"name":"Journal of Pseudo-Differential Operators and Applications","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On single-layer potentials, pseudo-gradients and a jump theorem for an isotropic $$\\\\alpha $$ -stable stochastic process\",\"authors\":\"Khrystyna Mamalyha, Mykhailo Osypchuk\",\"doi\":\"10.1007/s11868-023-00574-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of this paper is a behavior investigation of pseudo-gradients with respect to the spatial variable of a single-layer potential if the spatial point tends to some point in the carrier surface of the potential. The potentials connect to the generator of an isotropic <span>\\\\(\\\\alpha \\\\)</span>-stable stochastic process with the power <span>\\\\(\\\\alpha \\\\in (1,2]\\\\)</span>. This generator is the fractional Laplacian of the order <span>\\\\(\\\\alpha \\\\)</span>. Pseudo-gradient or fractional gradient is the pseudo-differential operator of the gradient type. Its order <span>\\\\(\\\\beta \\\\)</span> is a positive number less than <span>\\\\(\\\\alpha \\\\)</span>. The jump theorem is known in the case of <span>\\\\(\\\\beta =\\\\alpha -1\\\\)</span>. We present here the corresponding results in the cases of <span>\\\\(\\\\beta &lt;\\\\alpha -1\\\\)</span> and <span>\\\\(\\\\beta &gt;\\\\alpha -1\\\\)</span>. In the first case there are no jumps, and in the second case there are no finite limits of the fractional gradients of the single-layer potential, when the spatial argument tends to some point placed on the potential carrier.\\n</p>\",\"PeriodicalId\":48793,\"journal\":{\"name\":\"Journal of Pseudo-Differential Operators and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pseudo-Differential Operators and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11868-023-00574-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pseudo-Differential Operators and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11868-023-00574-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是在空间点趋向于单层势的载流面上的某一点时,对与单层势的空间变量有关的伪梯度进行行为研究。该势垒连接到一个各向同性(\α)-稳定随机过程的发生器,其功率为\(\α\in (1,2]\)。这个发生器是阶(\α \)的分数拉普拉奇。伪梯度或分数梯度是梯度类型的伪微分算子。它的阶\(\beta \)是小于\(\alpha \)的正数。在 \(\beta =\alpha -1\) 的情况下,跃迁定理是已知的。我们在这里给出了在(beta = (alpha -1))和(beta = (alpha -1))情况下的相应结果。在第一种情况下没有跳跃,而在第二种情况下,当空间参数趋向于势载体上的某个点时,单层势的分数梯度没有有限极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On single-layer potentials, pseudo-gradients and a jump theorem for an isotropic $$\alpha $$ -stable stochastic process

The aim of this paper is a behavior investigation of pseudo-gradients with respect to the spatial variable of a single-layer potential if the spatial point tends to some point in the carrier surface of the potential. The potentials connect to the generator of an isotropic \(\alpha \)-stable stochastic process with the power \(\alpha \in (1,2]\). This generator is the fractional Laplacian of the order \(\alpha \). Pseudo-gradient or fractional gradient is the pseudo-differential operator of the gradient type. Its order \(\beta \) is a positive number less than \(\alpha \). The jump theorem is known in the case of \(\beta =\alpha -1\). We present here the corresponding results in the cases of \(\beta <\alpha -1\) and \(\beta >\alpha -1\). In the first case there are no jumps, and in the second case there are no finite limits of the fractional gradients of the single-layer potential, when the spatial argument tends to some point placed on the potential carrier.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
59
期刊介绍: The Journal of Pseudo-Differential Operators and Applications is a forum for high quality papers in the mathematics, applications and numerical analysis of pseudo-differential operators. Pseudo-differential operators are understood in a very broad sense embracing but not limited to harmonic analysis, functional analysis, operator theory and algebras, partial differential equations, geometry, mathematical physics and novel applications in engineering, geophysics and medical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信