Kleene Posets 和 Kleene Lattices 的可表示性

Pub Date : 2023-12-08 DOI:10.1007/s11225-023-10080-3
Ivan Chajda, Helmut Länger, Jan Paseka
{"title":"Kleene Posets 和 Kleene Lattices 的可表示性","authors":"Ivan Chajda, Helmut Länger, Jan Paseka","doi":"10.1007/s11225-023-10080-3","DOIUrl":null,"url":null,"abstract":"<p>A Kleene lattice is a distributive lattice equipped with an antitone involution and satisfying the so-called normality condition. These lattices were introduced by J. A. Kalman. We extended this concept also for posets with an antitone involution. In our recent paper (Chajda, Länger and Paseka, in: Proceeding of 2022 IEEE 52th International Symposium on Multiple-Valued Logic, Springer, 2022), we showed how to construct such Kleene lattices or Kleene posets from a given distributive lattice or poset and a fixed element of this lattice or poset by using the so-called twist product construction, respectively. We extend this construction of Kleene lattices and Kleene posets by considering a fixed subset instead of a fixed element. Moreover, we show that in some cases, this generating poset can be embedded into the resulting Kleene poset. We investigate the question when a Kleene poset can be represented by a Kleene poset obtained by the mentioned construction. We show that a direct product of representable Kleene posets is again representable and hence a direct product of finite chains is representable. This does not hold in general for subdirect products, but we show some examples where it holds. We present large classes of representable and non-representable Kleene posets. Finally, we investigate two kinds of extensions of a distributive poset <span>\\({\\textbf{A}}\\)</span>, namely its Dedekind-MacNeille completion <span>\\({{\\,\\mathrm{\\textbf{DM}}\\,}}({\\textbf{A}})\\)</span> and a completion <span>\\(G({\\textbf{A}})\\)</span> which coincides with <span>\\({{\\,\\mathrm{\\textbf{DM}}\\,}}({\\textbf{A}})\\)</span> provided <span>\\({\\textbf{A}}\\)</span> is finite. In particular we prove that if <span>\\({\\textbf{A}}\\)</span> is a Kleene poset then its extension <span>\\(G({\\textbf{A}})\\)</span> is also a Kleene lattice. If the subset <i>X</i> of principal order ideals of <span>\\({\\textbf{A}}\\)</span> is involution-closed and doubly dense in <span>\\(G({\\textbf{A}})\\)</span> then it generates <span>\\(G({\\textbf{A}})\\)</span> and it is isomorphic to <span>\\({\\textbf{A}}\\)</span> itself.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representability of Kleene Posets and Kleene Lattices\",\"authors\":\"Ivan Chajda, Helmut Länger, Jan Paseka\",\"doi\":\"10.1007/s11225-023-10080-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A Kleene lattice is a distributive lattice equipped with an antitone involution and satisfying the so-called normality condition. These lattices were introduced by J. A. Kalman. We extended this concept also for posets with an antitone involution. In our recent paper (Chajda, Länger and Paseka, in: Proceeding of 2022 IEEE 52th International Symposium on Multiple-Valued Logic, Springer, 2022), we showed how to construct such Kleene lattices or Kleene posets from a given distributive lattice or poset and a fixed element of this lattice or poset by using the so-called twist product construction, respectively. We extend this construction of Kleene lattices and Kleene posets by considering a fixed subset instead of a fixed element. Moreover, we show that in some cases, this generating poset can be embedded into the resulting Kleene poset. We investigate the question when a Kleene poset can be represented by a Kleene poset obtained by the mentioned construction. We show that a direct product of representable Kleene posets is again representable and hence a direct product of finite chains is representable. This does not hold in general for subdirect products, but we show some examples where it holds. We present large classes of representable and non-representable Kleene posets. Finally, we investigate two kinds of extensions of a distributive poset <span>\\\\({\\\\textbf{A}}\\\\)</span>, namely its Dedekind-MacNeille completion <span>\\\\({{\\\\,\\\\mathrm{\\\\textbf{DM}}\\\\,}}({\\\\textbf{A}})\\\\)</span> and a completion <span>\\\\(G({\\\\textbf{A}})\\\\)</span> which coincides with <span>\\\\({{\\\\,\\\\mathrm{\\\\textbf{DM}}\\\\,}}({\\\\textbf{A}})\\\\)</span> provided <span>\\\\({\\\\textbf{A}}\\\\)</span> is finite. In particular we prove that if <span>\\\\({\\\\textbf{A}}\\\\)</span> is a Kleene poset then its extension <span>\\\\(G({\\\\textbf{A}})\\\\)</span> is also a Kleene lattice. If the subset <i>X</i> of principal order ideals of <span>\\\\({\\\\textbf{A}}\\\\)</span> is involution-closed and doubly dense in <span>\\\\(G({\\\\textbf{A}})\\\\)</span> then it generates <span>\\\\(G({\\\\textbf{A}})\\\\)</span> and it is isomorphic to <span>\\\\({\\\\textbf{A}}\\\\)</span> itself.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11225-023-10080-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11225-023-10080-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

克莱因网格是一种分布式网格,配备有反调内卷,并满足所谓的规范性条件。这些网格由卡尔曼(J. A. Kalman)提出。我们将这一概念扩展到了具有反调卷积的正集。在我们最近的论文(Chajda, Länger and Paseka, in:Proceeding of 2022 IEEE 52th International Symposium on Multiple-Valued Logic, Springer, 2022)中,我们展示了如何通过所谓的扭积构造,分别从给定的分布式网格或正集以及该网格或正集的固定元素构造出这样的克莱因网格或克莱因正集。我们通过考虑固定子集而不是固定元素,扩展了克莱因网格和克莱因集合的这种构造。此外,我们还证明了在某些情况下,这种生成的正集可以嵌入到所得到的克莱因正集中。我们研究了一个问题,即一个克莱因集合什么时候可以用上述构造得到的克莱因集合来表示。我们证明,可表示克莱因集合的直接积也是可表示的,因此有限链的直接积也是可表示的。对于子直积来说,这一般不成立,但我们展示了一些成立的例子。我们提出了一大类可表征和不可表征的 Kleene posets。最后,我们研究了分布实在集 \({\textbf{A}}\)的两种扩展,即它的 Dedekind-MacNeille 完成 \({{\,\mathrm{\textbf{DM}}\、}}({\textbf{A}}))和一个与 \({{\,\mathrm{textbf{DM}}}\,}}({\textbf{A}})重合的补全 \(G({\textbf{A}})),前提是 \({\textbf{A}})是有限的。我们特别要证明的是:如果 \({\textbf{A}}\) 是一个 Kleene 正集,那么它的扩展 \(G({\textbf{A}})\) 也是一个 Kleene 格。如果 \({\textbf{A}} 的主阶理想子集 X 在 \(G({\textbf{A}})\中是内卷闭的和双密的,那么它生成 \(G({\textbf{A}})\,并且它与\({\textbf{A}}\)本身同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Representability of Kleene Posets and Kleene Lattices

A Kleene lattice is a distributive lattice equipped with an antitone involution and satisfying the so-called normality condition. These lattices were introduced by J. A. Kalman. We extended this concept also for posets with an antitone involution. In our recent paper (Chajda, Länger and Paseka, in: Proceeding of 2022 IEEE 52th International Symposium on Multiple-Valued Logic, Springer, 2022), we showed how to construct such Kleene lattices or Kleene posets from a given distributive lattice or poset and a fixed element of this lattice or poset by using the so-called twist product construction, respectively. We extend this construction of Kleene lattices and Kleene posets by considering a fixed subset instead of a fixed element. Moreover, we show that in some cases, this generating poset can be embedded into the resulting Kleene poset. We investigate the question when a Kleene poset can be represented by a Kleene poset obtained by the mentioned construction. We show that a direct product of representable Kleene posets is again representable and hence a direct product of finite chains is representable. This does not hold in general for subdirect products, but we show some examples where it holds. We present large classes of representable and non-representable Kleene posets. Finally, we investigate two kinds of extensions of a distributive poset \({\textbf{A}}\), namely its Dedekind-MacNeille completion \({{\,\mathrm{\textbf{DM}}\,}}({\textbf{A}})\) and a completion \(G({\textbf{A}})\) which coincides with \({{\,\mathrm{\textbf{DM}}\,}}({\textbf{A}})\) provided \({\textbf{A}}\) is finite. In particular we prove that if \({\textbf{A}}\) is a Kleene poset then its extension \(G({\textbf{A}})\) is also a Kleene lattice. If the subset X of principal order ideals of \({\textbf{A}}\) is involution-closed and doubly dense in \(G({\textbf{A}})\) then it generates \(G({\textbf{A}})\) and it is isomorphic to \({\textbf{A}}\) itself.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信