{"title":"二维线性弹性浅壳方程中不符元素的新先验误差估计","authors":"Rongfang Wu, Xiaoqin Shen, Qian Yang, Shengfeng Zhu","doi":"10.4310/cms.2024.v22.n1.a7","DOIUrl":null,"url":null,"abstract":"In this paper, we mainly propose a new <i>priori</i> error estimation for the two-dimensional linearly elastic shallow shell equations, which rely on a family of Kirchhoff–Love theories. As the displacement components of the points on the middle surface have different regularities, the nonconforming element for the discretization shallow shell equations is analysed. Then, relying on the enriching operator, a new error estimate of energy norm is given under the regularity assumption $\\vec{\\zeta}_H \\times \\zeta_3 \\in (H^{1+m} (\\omega))^2 \\times H^{2+m} (\\omega)$ with any $m \\gt 0$. Compared with the classic error analysis in other shell literature, convergence order of numerical solution can be controlled by its corresponding approximation error with an arbitrarily high order term, which fills the gap in the computational shell theory. Finally, numerical results for the saddle shell and cylindrical shell confirm the theoretical prediction.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new priori error estimation of nonconforming element for two-dimensional linearly elastic shallow shell equations\",\"authors\":\"Rongfang Wu, Xiaoqin Shen, Qian Yang, Shengfeng Zhu\",\"doi\":\"10.4310/cms.2024.v22.n1.a7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we mainly propose a new <i>priori</i> error estimation for the two-dimensional linearly elastic shallow shell equations, which rely on a family of Kirchhoff–Love theories. As the displacement components of the points on the middle surface have different regularities, the nonconforming element for the discretization shallow shell equations is analysed. Then, relying on the enriching operator, a new error estimate of energy norm is given under the regularity assumption $\\\\vec{\\\\zeta}_H \\\\times \\\\zeta_3 \\\\in (H^{1+m} (\\\\omega))^2 \\\\times H^{2+m} (\\\\omega)$ with any $m \\\\gt 0$. Compared with the classic error analysis in other shell literature, convergence order of numerical solution can be controlled by its corresponding approximation error with an arbitrarily high order term, which fills the gap in the computational shell theory. Finally, numerical results for the saddle shell and cylindrical shell confirm the theoretical prediction.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cms.2024.v22.n1.a7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cms.2024.v22.n1.a7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A new priori error estimation of nonconforming element for two-dimensional linearly elastic shallow shell equations
In this paper, we mainly propose a new priori error estimation for the two-dimensional linearly elastic shallow shell equations, which rely on a family of Kirchhoff–Love theories. As the displacement components of the points on the middle surface have different regularities, the nonconforming element for the discretization shallow shell equations is analysed. Then, relying on the enriching operator, a new error estimate of energy norm is given under the regularity assumption $\vec{\zeta}_H \times \zeta_3 \in (H^{1+m} (\omega))^2 \times H^{2+m} (\omega)$ with any $m \gt 0$. Compared with the classic error analysis in other shell literature, convergence order of numerical solution can be controlled by its corresponding approximation error with an arbitrarily high order term, which fills the gap in the computational shell theory. Finally, numerical results for the saddle shell and cylindrical shell confirm the theoretical prediction.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.