{"title":"用基于随机漫步的方法在蛋白质-蛋白质相互作用网络中识别病理性近视相关基因","authors":"Jiyu Zhang, Tao Huang, Qiao Sun, Jian Zhang","doi":"10.2174/0115748936268218231114070754","DOIUrl":null,"url":null,"abstract":"Background:: Pathological myopia, a severe variant of myopia, extends beyond the typical refractive error associated with nearsightedness. While the condition has a strong genetic component, the intricate mechanisms of inheritance remain elusive. Some genes have been associated with the development of pathological myopia, but their exact roles are not fully understood. Objective:: This study aimed to identify novel genes associated with pathological myopia Methods:: Our study leveraged DisGeNET to identify 184 genes linked with high myopia and 39 genes related to degenerative myopia. To uncover additional pathological myopia-associated genes, we employed the random walk with restart algorithm to investigate the protein-protein interactions network. We used the previously identified 184 high myopia and 39 degenerative myopia genes as seed nodes. Results:: Through subsequent screening tests, we discarded genes with weak associations, yielding 103 new genes for high myopia and 33 for degenerative myopia. Conclusion:: We confirmed the association of certain genes, including six genes that were confirmed to be associated with both high and degenerative myopia. The newly discovered genes are helpful to uncover and understand the pathogenesis of myopia.","PeriodicalId":10801,"journal":{"name":"Current Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying Pathological Myopia Associated Genes with A Random Walk- Based Method in Protein-Protein Interaction Network\",\"authors\":\"Jiyu Zhang, Tao Huang, Qiao Sun, Jian Zhang\",\"doi\":\"10.2174/0115748936268218231114070754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background:: Pathological myopia, a severe variant of myopia, extends beyond the typical refractive error associated with nearsightedness. While the condition has a strong genetic component, the intricate mechanisms of inheritance remain elusive. Some genes have been associated with the development of pathological myopia, but their exact roles are not fully understood. Objective:: This study aimed to identify novel genes associated with pathological myopia Methods:: Our study leveraged DisGeNET to identify 184 genes linked with high myopia and 39 genes related to degenerative myopia. To uncover additional pathological myopia-associated genes, we employed the random walk with restart algorithm to investigate the protein-protein interactions network. We used the previously identified 184 high myopia and 39 degenerative myopia genes as seed nodes. Results:: Through subsequent screening tests, we discarded genes with weak associations, yielding 103 new genes for high myopia and 33 for degenerative myopia. Conclusion:: We confirmed the association of certain genes, including six genes that were confirmed to be associated with both high and degenerative myopia. The newly discovered genes are helpful to uncover and understand the pathogenesis of myopia.\",\"PeriodicalId\":10801,\"journal\":{\"name\":\"Current Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0115748936268218231114070754\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0115748936268218231114070754","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Identifying Pathological Myopia Associated Genes with A Random Walk- Based Method in Protein-Protein Interaction Network
Background:: Pathological myopia, a severe variant of myopia, extends beyond the typical refractive error associated with nearsightedness. While the condition has a strong genetic component, the intricate mechanisms of inheritance remain elusive. Some genes have been associated with the development of pathological myopia, but their exact roles are not fully understood. Objective:: This study aimed to identify novel genes associated with pathological myopia Methods:: Our study leveraged DisGeNET to identify 184 genes linked with high myopia and 39 genes related to degenerative myopia. To uncover additional pathological myopia-associated genes, we employed the random walk with restart algorithm to investigate the protein-protein interactions network. We used the previously identified 184 high myopia and 39 degenerative myopia genes as seed nodes. Results:: Through subsequent screening tests, we discarded genes with weak associations, yielding 103 new genes for high myopia and 33 for degenerative myopia. Conclusion:: We confirmed the association of certain genes, including six genes that were confirmed to be associated with both high and degenerative myopia. The newly discovered genes are helpful to uncover and understand the pathogenesis of myopia.
期刊介绍:
Current Bioinformatics aims to publish all the latest and outstanding developments in bioinformatics. Each issue contains a series of timely, in-depth/mini-reviews, research papers and guest edited thematic issues written by leaders in the field, covering a wide range of the integration of biology with computer and information science.
The journal focuses on advances in computational molecular/structural biology, encompassing areas such as computing in biomedicine and genomics, computational proteomics and systems biology, and metabolic pathway engineering. Developments in these fields have direct implications on key issues related to health care, medicine, genetic disorders, development of agricultural products, renewable energy, environmental protection, etc.