非局部 Neumann 问题的一般框架

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Guy Foghem, Moritz Kassmann
{"title":"非局部 Neumann 问题的一般框架","authors":"Guy Foghem, Moritz Kassmann","doi":"10.4310/cms.2024.v22.n1.a2","DOIUrl":null,"url":null,"abstract":"Within the framework of Hilbert spaces, we solve nonlocal problems in bounded domains with prescribed conditions on the complement of the domain. Our main focus is on the inhomogeneous Neumann problem in a rather general setting. We also study the transition from exterior value problems to local boundary value problems. Several results are new even for the fractional Laplace operator. The setting also covers relevant models in the framework of peridynamics.","PeriodicalId":50659,"journal":{"name":"Communications in Mathematical Sciences","volume":"29 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"A general framework for nonlocal Neumann problems\",\"authors\":\"Guy Foghem, Moritz Kassmann\",\"doi\":\"10.4310/cms.2024.v22.n1.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Within the framework of Hilbert spaces, we solve nonlocal problems in bounded domains with prescribed conditions on the complement of the domain. Our main focus is on the inhomogeneous Neumann problem in a rather general setting. We also study the transition from exterior value problems to local boundary value problems. Several results are new even for the fractional Laplace operator. The setting also covers relevant models in the framework of peridynamics.\",\"PeriodicalId\":50659,\"journal\":{\"name\":\"Communications in Mathematical Sciences\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cms.2024.v22.n1.a2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cms.2024.v22.n1.a2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 20

摘要

在希尔伯特空间的框架内,我们解决了有界域中的非局部问题,并对域的补集规定了条件。我们的主要重点是在一个相当普遍的环境中解决非均质 Neumann 问题。我们还研究了从外部值问题到局部边界值问题的过渡。即使对于分数拉普拉斯算子,也有若干新结果。这一设置还涵盖了周动力学框架中的相关模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A general framework for nonlocal Neumann problems
Within the framework of Hilbert spaces, we solve nonlocal problems in bounded domains with prescribed conditions on the complement of the domain. Our main focus is on the inhomogeneous Neumann problem in a rather general setting. We also study the transition from exterior value problems to local boundary value problems. Several results are new even for the fractional Laplace operator. The setting also covers relevant models in the framework of peridynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
59
审稿时长
6 months
期刊介绍: Covers modern applied mathematics in the fields of modeling, applied and stochastic analyses and numerical computations—on problems that arise in physical, biological, engineering, and financial applications. The journal publishes high-quality, original research articles, reviews, and expository papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信