对具有恒定扰动的双缩放极限 SYK 模型的非交换概率洞察:矩、累积量和 $q$-independence

Shuang Wu
{"title":"对具有恒定扰动的双缩放极限 SYK 模型的非交换概率洞察:矩、累积量和 $q$-independence","authors":"Shuang Wu","doi":"arxiv-2312.04297","DOIUrl":null,"url":null,"abstract":"Extending the results of \\cite{Wu}, we study the double-scaling limit SYK\n(DSSYK) model with an additional diagonal matrix with a fixed number $c$ of\nnonzero constant entries $\\theta$. This constant diagonal term can be rewritten\nin terms of Majorana fermion products. Its specific formula depends on the\nvalue of $c$. We find exact expressions for the moments of this model. More\nimportantly, by proposing a moment-cumulant relation, we reinterpret the effect\nof introducing a constant term in the context of non-commutative probability\ntheory. This gives rise to a $\\tilde{q}$ dependent mixture of independences\nwithin the moment formula. The parameter $\\tilde{q}$, derived from the\nq-Ornstein-Uhlenbeck (q-OU) process, controls this transformation. It\ninterpolates between classical independence ($\\tilde{q}=1$) and Boolean\nindependence ($\\tilde{q}=0$). The underlying combinatorial structures of this\nmodel provide the non-commutative probability connections. Additionally, we\nexplore the potential relation between these connections and their\ngravitational path integral counterparts.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-commutative probability insights into the double-scaling limit SYK Model with constant perturbations: moments, cumulants, and $q$-independence\",\"authors\":\"Shuang Wu\",\"doi\":\"arxiv-2312.04297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extending the results of \\\\cite{Wu}, we study the double-scaling limit SYK\\n(DSSYK) model with an additional diagonal matrix with a fixed number $c$ of\\nnonzero constant entries $\\\\theta$. This constant diagonal term can be rewritten\\nin terms of Majorana fermion products. Its specific formula depends on the\\nvalue of $c$. We find exact expressions for the moments of this model. More\\nimportantly, by proposing a moment-cumulant relation, we reinterpret the effect\\nof introducing a constant term in the context of non-commutative probability\\ntheory. This gives rise to a $\\\\tilde{q}$ dependent mixture of independences\\nwithin the moment formula. The parameter $\\\\tilde{q}$, derived from the\\nq-Ornstein-Uhlenbeck (q-OU) process, controls this transformation. It\\ninterpolates between classical independence ($\\\\tilde{q}=1$) and Boolean\\nindependence ($\\\\tilde{q}=0$). The underlying combinatorial structures of this\\nmodel provide the non-commutative probability connections. Additionally, we\\nexplore the potential relation between these connections and their\\ngravitational path integral counterparts.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.04297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.04297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们扩展了吴文俊的研究成果,研究了双尺度极限SYK(DSSYK)模型,该模型有一个额外的对角矩阵,其中有固定数量的非零常数项$c$(theta$)。这个常数对角项可以用马约拉纳费米子乘积来重写。它的具体公式取决于 $c$ 的值。我们找到了这个模型矩的精确表达式。更重要的是,通过提出矩积关系,我们在非交换概率论的背景下重新解释了引入常数项的效果。这就在矩公式中产生了一个依赖于 $\tilde{q}$ 的独立混合物。从q-Ornstein-Uhlenbeck(q-OU)过程导出的参数$\tilde{q}$控制着这一转变。它介于经典独立性($\tilde{q}=1$)和布尔独立性($\tilde{q}=0$)之间。该模型的基本组合结构提供了非交换概率联系。此外,我们还探讨了这些联系与其引力路径积分对应物之间的潜在关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-commutative probability insights into the double-scaling limit SYK Model with constant perturbations: moments, cumulants, and $q$-independence
Extending the results of \cite{Wu}, we study the double-scaling limit SYK (DSSYK) model with an additional diagonal matrix with a fixed number $c$ of nonzero constant entries $\theta$. This constant diagonal term can be rewritten in terms of Majorana fermion products. Its specific formula depends on the value of $c$. We find exact expressions for the moments of this model. More importantly, by proposing a moment-cumulant relation, we reinterpret the effect of introducing a constant term in the context of non-commutative probability theory. This gives rise to a $\tilde{q}$ dependent mixture of independences within the moment formula. The parameter $\tilde{q}$, derived from the q-Ornstein-Uhlenbeck (q-OU) process, controls this transformation. It interpolates between classical independence ($\tilde{q}=1$) and Boolean independence ($\tilde{q}=0$). The underlying combinatorial structures of this model provide the non-commutative probability connections. Additionally, we explore the potential relation between these connections and their gravitational path integral counterparts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信