量子可积分系统精确解的非对角方法

Yi Qiao, Junpeng Cao, Wen-Li Yang, Kangjie Shi, Yupeng Wang
{"title":"量子可积分系统精确解的非对角方法","authors":"Yi Qiao, Junpeng Cao, Wen-Li Yang, Kangjie Shi, Yupeng Wang","doi":"arxiv-2312.04153","DOIUrl":null,"url":null,"abstract":"We investigate the $t$-$W$ scheme for the anti-ferromagnetic XXX spin chain\nunder both periodic and open boundary conditions. We propose a new\nparametrization of the eigenvalues of transfer matrix. Based on it, we obtain\nthe exact solution of the system. By analyzing the distribution of zero roots\nat the ground state, we obtain the explicit expressions of the eigenfunctions\nof the transfer matrix and the associated $\\mathbb{W}$ operator (see (2.8) and\n(3.20)) in the thermodynamic limit. We find that the ratio of the quantum\ndeterminant with the eigenvalue of $\\mathbb{W}$ operator for the ground state\nexhibits exponential decay behavior. Thus this fact ensures that the so-called\ninversion relation (the $t-W$ relation without the $W$-term) can be used to\nstudy the ground state properties of quantum integrable systems with/without\n$U(1)$-symmetry in the thermodynamic limit.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Off-diagonal approach to the exact solution of quantum integrable systems\",\"authors\":\"Yi Qiao, Junpeng Cao, Wen-Li Yang, Kangjie Shi, Yupeng Wang\",\"doi\":\"arxiv-2312.04153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the $t$-$W$ scheme for the anti-ferromagnetic XXX spin chain\\nunder both periodic and open boundary conditions. We propose a new\\nparametrization of the eigenvalues of transfer matrix. Based on it, we obtain\\nthe exact solution of the system. By analyzing the distribution of zero roots\\nat the ground state, we obtain the explicit expressions of the eigenfunctions\\nof the transfer matrix and the associated $\\\\mathbb{W}$ operator (see (2.8) and\\n(3.20)) in the thermodynamic limit. We find that the ratio of the quantum\\ndeterminant with the eigenvalue of $\\\\mathbb{W}$ operator for the ground state\\nexhibits exponential decay behavior. Thus this fact ensures that the so-called\\ninversion relation (the $t-W$ relation without the $W$-term) can be used to\\nstudy the ground state properties of quantum integrable systems with/without\\n$U(1)$-symmetry in the thermodynamic limit.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.04153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.04153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了反铁磁 XXX 自旋链在周期性和开放边界条件下的 $t$-$W$ 方案。我们提出了转移矩阵特征值的新参数化。在此基础上,我们得到了系统的精确解。通过分析基态零根的分布,我们得到了热力学极限下转移矩阵和相关 $mathbb{W}$ 算子(见 (2.8) 和 (3.20))的特征函数的明确表达式。我们发现,地面态的量子决定子与 $\mathbb{W}$ 算子的特征值之比呈现指数衰减行为。因此,这一事实确保了所谓的反转关系(没有 $W$ 项的 $t-W$ 关系)可以用来研究热力学极限下有/无 $U(1)$ 对称性的量子可积分系统的基态性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Off-diagonal approach to the exact solution of quantum integrable systems
We investigate the $t$-$W$ scheme for the anti-ferromagnetic XXX spin chain under both periodic and open boundary conditions. We propose a new parametrization of the eigenvalues of transfer matrix. Based on it, we obtain the exact solution of the system. By analyzing the distribution of zero roots at the ground state, we obtain the explicit expressions of the eigenfunctions of the transfer matrix and the associated $\mathbb{W}$ operator (see (2.8) and (3.20)) in the thermodynamic limit. We find that the ratio of the quantum determinant with the eigenvalue of $\mathbb{W}$ operator for the ground state exhibits exponential decay behavior. Thus this fact ensures that the so-called inversion relation (the $t-W$ relation without the $W$-term) can be used to study the ground state properties of quantum integrable systems with/without $U(1)$-symmetry in the thermodynamic limit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信