长程渗流临界值的连续性

Johannes Bäumler
{"title":"长程渗流临界值的连续性","authors":"Johannes Bäumler","doi":"arxiv-2312.04099","DOIUrl":null,"url":null,"abstract":"We show that for long-range percolation with polynomially decaying connection\nprobabilities in dimension $d\\geq 2$, the critical value depends continuously\non the precise specifications of the model. Among other things, we use this\nresult to show transience of the infinite supercritical long-range percolation\ncluster in dimension $d\\geq 3$ and to prove a shape theorem for super-critical\nlong-range percolation in the strong decay regime.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuity of the critical value for long-range percolation\",\"authors\":\"Johannes Bäumler\",\"doi\":\"arxiv-2312.04099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that for long-range percolation with polynomially decaying connection\\nprobabilities in dimension $d\\\\geq 2$, the critical value depends continuously\\non the precise specifications of the model. Among other things, we use this\\nresult to show transience of the infinite supercritical long-range percolation\\ncluster in dimension $d\\\\geq 3$ and to prove a shape theorem for super-critical\\nlong-range percolation in the strong decay regime.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.04099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.04099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,对于维度为 $d\geq 2$ 的多项式衰减连接概率的长程渗滤,临界值连续地取决于模型的精确规格。除其他外,我们利用这一结果证明了在维数$d\geq 3$下无限超临界长程渗滤簇的瞬时性,并证明了强衰变机制下超临界长程渗滤的形状定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuity of the critical value for long-range percolation
We show that for long-range percolation with polynomially decaying connection probabilities in dimension $d\geq 2$, the critical value depends continuously on the precise specifications of the model. Among other things, we use this result to show transience of the infinite supercritical long-range percolation cluster in dimension $d\geq 3$ and to prove a shape theorem for super-critical long-range percolation in the strong decay regime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信