{"title":"长程渗流临界值的连续性","authors":"Johannes Bäumler","doi":"arxiv-2312.04099","DOIUrl":null,"url":null,"abstract":"We show that for long-range percolation with polynomially decaying connection\nprobabilities in dimension $d\\geq 2$, the critical value depends continuously\non the precise specifications of the model. Among other things, we use this\nresult to show transience of the infinite supercritical long-range percolation\ncluster in dimension $d\\geq 3$ and to prove a shape theorem for super-critical\nlong-range percolation in the strong decay regime.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuity of the critical value for long-range percolation\",\"authors\":\"Johannes Bäumler\",\"doi\":\"arxiv-2312.04099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that for long-range percolation with polynomially decaying connection\\nprobabilities in dimension $d\\\\geq 2$, the critical value depends continuously\\non the precise specifications of the model. Among other things, we use this\\nresult to show transience of the infinite supercritical long-range percolation\\ncluster in dimension $d\\\\geq 3$ and to prove a shape theorem for super-critical\\nlong-range percolation in the strong decay regime.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.04099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.04099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Continuity of the critical value for long-range percolation
We show that for long-range percolation with polynomially decaying connection
probabilities in dimension $d\geq 2$, the critical value depends continuously
on the precise specifications of the model. Among other things, we use this
result to show transience of the infinite supercritical long-range percolation
cluster in dimension $d\geq 3$ and to prove a shape theorem for super-critical
long-range percolation in the strong decay regime.