{"title":"哈丹-沙斯特里型 q变形长程自旋链的超对称广义化和联立杨-巴克斯特方程的三角 GL(N|M) 解","authors":"M. Matushko, A. Zotov","doi":"arxiv-2312.04525","DOIUrl":null,"url":null,"abstract":"We propose commuting set of matrix-valued difference operators in terms of\ntrigonometric ${\\rm GL}(N|M)$-valued $R$-matrices providing quantum\nsupersymmetric (and possibly anisotropic) spin Ruijsenaars-Macdonald operators.\nTwo types of trigonometric supersymmetric $R$-matrices are used. The first is\nthe one related to the affine quantized algebra ${\\hat{\\mathcal U}}_q({\\rm\ngl}(N|M))$. The second is a graded version of the standard $\\mathbb\nZ_n$-invariant $A_{n-1}$ type $R$-matrix. We show that being properly\nnormalized the latter graded $R$-matrix satisfies the associative Yang-Baxter\nequation. Next, we proceed to construction of long-range spin chains using the\nPolychronakos freezing trick. As a result we obtain a new family of spin\nchains, which extend the ${\\rm gl}(N|M)$-invariant Haldane-Shastry spin chain\nto q-deformed case with possible presence of anisotropy.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supersymmetric generalization of q-deformed long-range spin chains of Haldane-Shastry type and trigonometric GL(N|M) solution of associative Yang-Baxter equation\",\"authors\":\"M. Matushko, A. Zotov\",\"doi\":\"arxiv-2312.04525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose commuting set of matrix-valued difference operators in terms of\\ntrigonometric ${\\\\rm GL}(N|M)$-valued $R$-matrices providing quantum\\nsupersymmetric (and possibly anisotropic) spin Ruijsenaars-Macdonald operators.\\nTwo types of trigonometric supersymmetric $R$-matrices are used. The first is\\nthe one related to the affine quantized algebra ${\\\\hat{\\\\mathcal U}}_q({\\\\rm\\ngl}(N|M))$. The second is a graded version of the standard $\\\\mathbb\\nZ_n$-invariant $A_{n-1}$ type $R$-matrix. We show that being properly\\nnormalized the latter graded $R$-matrix satisfies the associative Yang-Baxter\\nequation. Next, we proceed to construction of long-range spin chains using the\\nPolychronakos freezing trick. As a result we obtain a new family of spin\\nchains, which extend the ${\\\\rm gl}(N|M)$-invariant Haldane-Shastry spin chain\\nto q-deformed case with possible presence of anisotropy.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.04525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.04525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Supersymmetric generalization of q-deformed long-range spin chains of Haldane-Shastry type and trigonometric GL(N|M) solution of associative Yang-Baxter equation
We propose commuting set of matrix-valued difference operators in terms of
trigonometric ${\rm GL}(N|M)$-valued $R$-matrices providing quantum
supersymmetric (and possibly anisotropic) spin Ruijsenaars-Macdonald operators.
Two types of trigonometric supersymmetric $R$-matrices are used. The first is
the one related to the affine quantized algebra ${\hat{\mathcal U}}_q({\rm
gl}(N|M))$. The second is a graded version of the standard $\mathbb
Z_n$-invariant $A_{n-1}$ type $R$-matrix. We show that being properly
normalized the latter graded $R$-matrix satisfies the associative Yang-Baxter
equation. Next, we proceed to construction of long-range spin chains using the
Polychronakos freezing trick. As a result we obtain a new family of spin
chains, which extend the ${\rm gl}(N|M)$-invariant Haldane-Shastry spin chain
to q-deformed case with possible presence of anisotropy.