ABJM 平分函数的仿射对称性及其泛化

Sanefumi Moriyama, Tomoki Nosaka
{"title":"ABJM 平分函数的仿射对称性及其泛化","authors":"Sanefumi Moriyama, Tomoki Nosaka","doi":"arxiv-2312.04206","DOIUrl":null,"url":null,"abstract":"Partially motivated by the fact that the grand partition function of the ABJM\ntheory or its generalization is expressed by a spectral operator enjoying\nsymmetries of the Weyl group, it was found that the grand partition function\nsatisfies the q-Painleve equation, which is constructed from the affine Weyl\ngroup. In this paper we clarify the affine symmetries of the grand partition\nfunction. With the affine symmetries, we find that the grand partition function\nextends naturally outside the fundamental domain of duality cascades and once\nthe Painleve equation holds in the fundamental domain, so does it outside.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Affine Symmetries for ABJM Partition Function and its Generalization\",\"authors\":\"Sanefumi Moriyama, Tomoki Nosaka\",\"doi\":\"arxiv-2312.04206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Partially motivated by the fact that the grand partition function of the ABJM\\ntheory or its generalization is expressed by a spectral operator enjoying\\nsymmetries of the Weyl group, it was found that the grand partition function\\nsatisfies the q-Painleve equation, which is constructed from the affine Weyl\\ngroup. In this paper we clarify the affine symmetries of the grand partition\\nfunction. With the affine symmetries, we find that the grand partition function\\nextends naturally outside the fundamental domain of duality cascades and once\\nthe Painleve equation holds in the fundamental domain, so does it outside.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.04206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.04206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

部分原因是 ABJM 理论或其广义的大分区函数是由享有韦尔群对称性的谱算子表达的,研究发现大分区函数满足 q-Painleve 方程,而 q-Painleve 方程是由仿射韦尔群构造的。本文阐明了大分治函数的仿射对称性。有了仿射对称性,我们发现大分治函数可以自然地扩展到对偶级联的基域之外,而且在基域内的潘勒夫方程成立时,基域之外的潘勒夫方程也成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Affine Symmetries for ABJM Partition Function and its Generalization
Partially motivated by the fact that the grand partition function of the ABJM theory or its generalization is expressed by a spectral operator enjoying symmetries of the Weyl group, it was found that the grand partition function satisfies the q-Painleve equation, which is constructed from the affine Weyl group. In this paper we clarify the affine symmetries of the grand partition function. With the affine symmetries, we find that the grand partition function extends naturally outside the fundamental domain of duality cascades and once the Painleve equation holds in the fundamental domain, so does it outside.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信