通过离散分数拉普拉奇的卡法雷利-西尔维斯特雷扩展实现离散高斯链的整数不可见性

Christophe Garban
{"title":"通过离散分数拉普拉奇的卡法雷利-西尔维斯特雷扩展实现离散高斯链的整数不可见性","authors":"Christophe Garban","doi":"arxiv-2312.04536","DOIUrl":null,"url":null,"abstract":"The Discrete Gaussian Chain is a model of interfaces $\\Psi : \\mathbf{Z} \\to\n\\mathbf{Z}$ governed by the Hamiltonian $$ H(\\Psi)= \\sum_{i\\neq j}\nJ_\\alpha(|i-j|) |\\Psi_i -\\Psi_j|^2 $$ with long-range coupling constants\n$J_\\alpha(k)\\asymp k^{-\\alpha}$. For any $\\alpha\\in [2,3)$ and at high enough\ntemperature, we prove an invariance principle for such an $\\alpha$-Discrete\nGaussian Chain towards a $H(\\alpha)$-fractional Gaussian process where the\nHurst index $H$ satisfies $H=H(\\alpha)=\\frac {\\alpha-2} 2$. This result goes beyond a conjecture by Fr\\\"ohlich and Zegarlinski\n\\cite{frohlich1991phase} which conjectured fluctuations of order $n^{\\tfrac 1 2\n(\\alpha-2) \\wedge 1}$ for the Discrete Gaussian Chain. More surprisingly, as opposed to the case of $2D$ Discrete Gaussian $\\Psi :\n\\mathbf{Z}^2 \\to \\mathbf{Z}$, we prove that the integers do not affect the {\\em\neffective temperature} of the discrete Gaussian Chain at large scales. Such an\n{\\em invisibility of the integers} had been predicted by Slurink and Hilhorst\nin the special case $\\alpha_c=2$ in \\cite{slurink1983roughening}. Our proof relies on four main ingredients: (1) A Caffareli-Silvestre\nextension for the discrete fractional Laplacian (which may be of independent\ninterest) (2) A localisation of the chain in a smoother sub-domain (3) A\nCoulomb gas-type expansion in the spirit of Fr\\\"ohlich-Spencer \\cite{FS} (4)\nControlling the amount of Dirichlet Energy supported by a $1D$ band for the\nGreen functions of $\\mathbf{Z}^2$ Bessel type random walks Our results also have implications for the so-called {\\em Boundary\nSine-Gordon field}. Finally, we analyse the (easier) regimes where\n$\\alpha\\in(1,2) \\cup (3,\\infty)$ as well as the $2D$ Discrete Gaussian with\nlong-range coupling constants (for any $\\alpha>\\alpha_c=4$).","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invisibility of the integers for the discrete Gaussian chain via a Caffarelli-Silvestre extension of the discrete fractional Laplacian\",\"authors\":\"Christophe Garban\",\"doi\":\"arxiv-2312.04536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Discrete Gaussian Chain is a model of interfaces $\\\\Psi : \\\\mathbf{Z} \\\\to\\n\\\\mathbf{Z}$ governed by the Hamiltonian $$ H(\\\\Psi)= \\\\sum_{i\\\\neq j}\\nJ_\\\\alpha(|i-j|) |\\\\Psi_i -\\\\Psi_j|^2 $$ with long-range coupling constants\\n$J_\\\\alpha(k)\\\\asymp k^{-\\\\alpha}$. For any $\\\\alpha\\\\in [2,3)$ and at high enough\\ntemperature, we prove an invariance principle for such an $\\\\alpha$-Discrete\\nGaussian Chain towards a $H(\\\\alpha)$-fractional Gaussian process where the\\nHurst index $H$ satisfies $H=H(\\\\alpha)=\\\\frac {\\\\alpha-2} 2$. This result goes beyond a conjecture by Fr\\\\\\\"ohlich and Zegarlinski\\n\\\\cite{frohlich1991phase} which conjectured fluctuations of order $n^{\\\\tfrac 1 2\\n(\\\\alpha-2) \\\\wedge 1}$ for the Discrete Gaussian Chain. More surprisingly, as opposed to the case of $2D$ Discrete Gaussian $\\\\Psi :\\n\\\\mathbf{Z}^2 \\\\to \\\\mathbf{Z}$, we prove that the integers do not affect the {\\\\em\\neffective temperature} of the discrete Gaussian Chain at large scales. Such an\\n{\\\\em invisibility of the integers} had been predicted by Slurink and Hilhorst\\nin the special case $\\\\alpha_c=2$ in \\\\cite{slurink1983roughening}. Our proof relies on four main ingredients: (1) A Caffareli-Silvestre\\nextension for the discrete fractional Laplacian (which may be of independent\\ninterest) (2) A localisation of the chain in a smoother sub-domain (3) A\\nCoulomb gas-type expansion in the spirit of Fr\\\\\\\"ohlich-Spencer \\\\cite{FS} (4)\\nControlling the amount of Dirichlet Energy supported by a $1D$ band for the\\nGreen functions of $\\\\mathbf{Z}^2$ Bessel type random walks Our results also have implications for the so-called {\\\\em Boundary\\nSine-Gordon field}. Finally, we analyse the (easier) regimes where\\n$\\\\alpha\\\\in(1,2) \\\\cup (3,\\\\infty)$ as well as the $2D$ Discrete Gaussian with\\nlong-range coupling constants (for any $\\\\alpha>\\\\alpha_c=4$).\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.04536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.04536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

离散高斯链是界面 $\Psi :\mathbf{Z}\to\mathbf{Z}$ 受哈密顿方程 $$ H(\Psi)= \sum_{i\neq j}J_\alpha(|i-j|) |\Psi_i -\Psi_j|^2 $ 与长程耦合常数 $J_\alpha(k)\asymp k^{-\alpha}$ 的支配。对于[2,3]$中的任意$\alpha\并且在足够高的温度下,我们证明了这样一个$\alpha$-离散高斯链对$H(\alpha)$-分数高斯过程的不变量原理,其中赫斯特指数$H$满足$H=H(\alpha)=\frac {\alpha-2} 2$。这一结果超越了 Fr\"ohlich 和 Zegarlinski 的猜想,他们猜想离散高斯链的波动阶数为 $n^{tfrac 1 2(\alpha-2) \wedge 1}$。更令人惊奇的是,与2D$离散高斯$\Psi :\mathbf{Z}^2 \to \mathbf{Z}$的情况相反,我们证明了整数在大尺度上并不影响离散高斯链的{/emeffective temperature}。斯鲁林克和希尔霍斯特曾在《slurink1983roughening》一书中预言,在$α_c=2$的特殊情况下,整数不会影响离散高斯链的{emeffective temperature}。我们的证明依赖于四个主要成分:(1) 离散分数拉普拉奇的 Caffareli-Silvestree 扩展(这可能是独立的兴趣点) (2) 链在更平滑子域中的局部化 (3) Fr\"ohlich-Spencer \cite{FS}精神中的库仑气体型扩展(4)控制$\mathbf{Z}^2$贝塞尔型随机游走的格林函数的$1D$带所支持的狄利克特能量的数量 我们的结果也对所谓的{em BoundarySine-Gordon field}有影响。最后,我们分析了$\alpha\in(1,2) \cup(3,\infty)$以及具有长程耦合常数(对于任何$\alpha>\alpha_c=4$)的2D$离散高斯(Discrete Gaussian)的(更容易)状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invisibility of the integers for the discrete Gaussian chain via a Caffarelli-Silvestre extension of the discrete fractional Laplacian
The Discrete Gaussian Chain is a model of interfaces $\Psi : \mathbf{Z} \to \mathbf{Z}$ governed by the Hamiltonian $$ H(\Psi)= \sum_{i\neq j} J_\alpha(|i-j|) |\Psi_i -\Psi_j|^2 $$ with long-range coupling constants $J_\alpha(k)\asymp k^{-\alpha}$. For any $\alpha\in [2,3)$ and at high enough temperature, we prove an invariance principle for such an $\alpha$-Discrete Gaussian Chain towards a $H(\alpha)$-fractional Gaussian process where the Hurst index $H$ satisfies $H=H(\alpha)=\frac {\alpha-2} 2$. This result goes beyond a conjecture by Fr\"ohlich and Zegarlinski \cite{frohlich1991phase} which conjectured fluctuations of order $n^{\tfrac 1 2 (\alpha-2) \wedge 1}$ for the Discrete Gaussian Chain. More surprisingly, as opposed to the case of $2D$ Discrete Gaussian $\Psi : \mathbf{Z}^2 \to \mathbf{Z}$, we prove that the integers do not affect the {\em effective temperature} of the discrete Gaussian Chain at large scales. Such an {\em invisibility of the integers} had been predicted by Slurink and Hilhorst in the special case $\alpha_c=2$ in \cite{slurink1983roughening}. Our proof relies on four main ingredients: (1) A Caffareli-Silvestre extension for the discrete fractional Laplacian (which may be of independent interest) (2) A localisation of the chain in a smoother sub-domain (3) A Coulomb gas-type expansion in the spirit of Fr\"ohlich-Spencer \cite{FS} (4) Controlling the amount of Dirichlet Energy supported by a $1D$ band for the Green functions of $\mathbf{Z}^2$ Bessel type random walks Our results also have implications for the so-called {\em Boundary Sine-Gordon field}. Finally, we analyse the (easier) regimes where $\alpha\in(1,2) \cup (3,\infty)$ as well as the $2D$ Discrete Gaussian with long-range coupling constants (for any $\alpha>\alpha_c=4$).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信