超椭圆曲线的常规模型

Pub Date : 2024-07-01 DOI:10.1016/j.indag.2023.12.001
Simone Muselli
{"title":"超椭圆曲线的常规模型","authors":"Simone Muselli","doi":"10.1016/j.indag.2023.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>K</mi></math></span> be a complete discretely valued field of residue characteristic not 2 and <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>K</mi></mrow></msub></math></span> its ring of integers. We explicitly construct a regular model over <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>K</mi></mrow></msub></math></span> with strict normal crossings of any hyperelliptic curve <span><math><mrow><mi>C</mi><mo>/</mo><mi>K</mi><mo>:</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>. For this purpose, we introduce the new notion of <em>MacLane cluster picture</em>, that aims to be a link between clusters and MacLane valuations.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019357723001040/pdfft?md5=04ca296b6016027d47af6c7c64f21d09&pid=1-s2.0-S0019357723001040-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Regular models of hyperelliptic curves\",\"authors\":\"Simone Muselli\",\"doi\":\"10.1016/j.indag.2023.12.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>K</mi></math></span> be a complete discretely valued field of residue characteristic not 2 and <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>K</mi></mrow></msub></math></span> its ring of integers. We explicitly construct a regular model over <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>K</mi></mrow></msub></math></span> with strict normal crossings of any hyperelliptic curve <span><math><mrow><mi>C</mi><mo>/</mo><mi>K</mi><mo>:</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>. For this purpose, we introduce the new notion of <em>MacLane cluster picture</em>, that aims to be a link between clusters and MacLane valuations.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0019357723001040/pdfft?md5=04ca296b6016027d47af6c7c64f21d09&pid=1-s2.0-S0019357723001040-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357723001040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723001040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设 K 是残差特征不为 2 的完整离散值域,OK 是其整数环。我们明确地在 OK 上构造了一个具有严格法交叉的任何超椭圆曲线 C/K:y2=f(x) 的正则模型。为此,我们引入了新的麦克莱恩簇图象概念,旨在成为簇与麦克莱恩估值之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Regular models of hyperelliptic curves

Let K be a complete discretely valued field of residue characteristic not 2 and OK its ring of integers. We explicitly construct a regular model over OK with strict normal crossings of any hyperelliptic curve C/K:y2=f(x). For this purpose, we introduce the new notion of MacLane cluster picture, that aims to be a link between clusters and MacLane valuations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信