电化学合成条件对碳化钨粉末成分、结构和形态的影响

IF 0.9 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS
I. A. Novoselova, S. V. Kuleshov, A. O. Omelchuk, V. N. Bykov, O. M. Fesenko
{"title":"电化学合成条件对碳化钨粉末成分、结构和形态的影响","authors":"I. A. Novoselova,&nbsp;S. V. Kuleshov,&nbsp;A. O. Omelchuk,&nbsp;V. N. Bykov,&nbsp;O. M. Fesenko","doi":"10.1007/s11106-023-00378-1","DOIUrl":null,"url":null,"abstract":"<p>High-temperature electrochemical synthesis (HTES) in molten salts is highly promising among the up-to-date methods for the production of carbide powders. Ultrafine composite powders of tungsten carbides (WC|C, WC|C|Pt, W<sub>2</sub>C|WC, and W<sub>2</sub>C|W) were synthesized using the HTES method in electrolytic baths with different chemical compositions under various synthesis conditions (cathode current density, CO<sub>2</sub> pressure in the electrolyzer, temperature, and cathode material). Composite powders (up to 3 wt.% free carbon) with a WC particle size of 20–30 nm were prepared using Na, K|Cl (1 : 1)–Na<sub>2</sub>W<sub>2</sub>O<sub>7</sub> (6.4 wt.%)–CO<sub>2</sub> (1.25 MPa) and Na, K|Cl (1 : 1)–Na<sub>2</sub>WO<sub>4</sub> (12.0 wt.%)–NaPO<sub>3</sub> (0.7 wt. %)–CO<sub>2</sub> (1.25 MPa) electrolytic baths at a temperature of 750°C. When the CO<sub>2</sub> pressure was reduced to 0.75 MPa, composite W<sub>2</sub>C|WC powders formed at the cathode. The ratio of carbide phases in the composites depended on the initial concentration of tungsten salts in the electrolyte and on the CO<sub>2</sub> gas pressure in the electrolyzer. The addition of Li<sub>2</sub>CO<sub>3</sub> (4.5 wt.%) to the electrolytic salt mixture decreased the tungsten carbide particles to 10 nm, changed their morphology, and increased the free carbon content in the composite up to 5 wt.%. The specific surface area of the powder increased by a factor of 4 to 7 (from 20–35 to 140 m<sup>2</sup>/g). The resulting products were modified with fine platinum particles through the use of platinum cathodes. The HTES method demonstrated its potential for producing tungsten carbide powders with the properties allowing their use as electrocatalysts in the hydrogen evolution reaction. For the WC|C composite powders synthesized in the Na, K|Cl–Na<sub>2</sub>W<sub>2</sub>O<sub>7</sub>–Li<sub>2</sub>CO<sub>3</sub>–CO<sub>2</sub> system, the hydrogen evolution potential was –0.02 V relative to the normal hydrogen electrode, the overpotential η at a current density of 10 mA/cm<sup>2</sup> was –110 mV, the exchange current was 7.0 ⋅ 10<sup>–4</sup> A/cm<sup>2</sup>, and the Tafel slope was –85 mV/dec.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 3-4","pages":"142 - 152"},"PeriodicalIF":0.9000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Electrochemical Synthesis Conditions on the Composition, Structure, and Morphology of Tungsten Carbide Powders\",\"authors\":\"I. A. Novoselova,&nbsp;S. V. Kuleshov,&nbsp;A. O. Omelchuk,&nbsp;V. N. Bykov,&nbsp;O. M. Fesenko\",\"doi\":\"10.1007/s11106-023-00378-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High-temperature electrochemical synthesis (HTES) in molten salts is highly promising among the up-to-date methods for the production of carbide powders. Ultrafine composite powders of tungsten carbides (WC|C, WC|C|Pt, W<sub>2</sub>C|WC, and W<sub>2</sub>C|W) were synthesized using the HTES method in electrolytic baths with different chemical compositions under various synthesis conditions (cathode current density, CO<sub>2</sub> pressure in the electrolyzer, temperature, and cathode material). Composite powders (up to 3 wt.% free carbon) with a WC particle size of 20–30 nm were prepared using Na, K|Cl (1 : 1)–Na<sub>2</sub>W<sub>2</sub>O<sub>7</sub> (6.4 wt.%)–CO<sub>2</sub> (1.25 MPa) and Na, K|Cl (1 : 1)–Na<sub>2</sub>WO<sub>4</sub> (12.0 wt.%)–NaPO<sub>3</sub> (0.7 wt. %)–CO<sub>2</sub> (1.25 MPa) electrolytic baths at a temperature of 750°C. When the CO<sub>2</sub> pressure was reduced to 0.75 MPa, composite W<sub>2</sub>C|WC powders formed at the cathode. The ratio of carbide phases in the composites depended on the initial concentration of tungsten salts in the electrolyte and on the CO<sub>2</sub> gas pressure in the electrolyzer. The addition of Li<sub>2</sub>CO<sub>3</sub> (4.5 wt.%) to the electrolytic salt mixture decreased the tungsten carbide particles to 10 nm, changed their morphology, and increased the free carbon content in the composite up to 5 wt.%. The specific surface area of the powder increased by a factor of 4 to 7 (from 20–35 to 140 m<sup>2</sup>/g). The resulting products were modified with fine platinum particles through the use of platinum cathodes. The HTES method demonstrated its potential for producing tungsten carbide powders with the properties allowing their use as electrocatalysts in the hydrogen evolution reaction. For the WC|C composite powders synthesized in the Na, K|Cl–Na<sub>2</sub>W<sub>2</sub>O<sub>7</sub>–Li<sub>2</sub>CO<sub>3</sub>–CO<sub>2</sub> system, the hydrogen evolution potential was –0.02 V relative to the normal hydrogen electrode, the overpotential η at a current density of 10 mA/cm<sup>2</sup> was –110 mV, the exchange current was 7.0 ⋅ 10<sup>–4</sup> A/cm<sup>2</sup>, and the Tafel slope was –85 mV/dec.</p>\",\"PeriodicalId\":742,\"journal\":{\"name\":\"Powder Metallurgy and Metal Ceramics\",\"volume\":\"62 3-4\",\"pages\":\"142 - 152\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Metallurgy and Metal Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11106-023-00378-1\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy and Metal Ceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11106-023-00378-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

在熔盐中进行高温电化学合成(HTES)是生产碳化物粉末的最新方法中极具前景的一种。在不同的合成条件(阴极电流密度、电解槽中的二氧化碳压力、温度和阴极材料)下,采用 HTES 法在不同化学成分的电解槽中合成了超细碳化钨复合粉末(WC|C、WC|C|Pt、W2C|WC 和 W2C|W)。使用 Na, K|Cl (1 : 1)-Na2W2O7 (6.4 wt.%)-CO2 (1.25 MPa) 和 Na, K|Cl (1 : 1)-Na2WO4 (12.0 wt.%)-NaPO3 (0.7 wt.%)-CO2 (1.25 MPa) 电解槽,在 750°C 的温度下制备了 WC 粒径为 20-30 nm 的复合粉末(游离碳含量高达 3 wt.%)。当二氧化碳压力降至 0.75 兆帕时,在阴极形成了 W2C|WC 复合粉末。复合材料中碳化物相的比例取决于电解液中钨盐的初始浓度和电解槽中的二氧化碳气体压力。在电解盐混合物中加入 Li2CO3(4.5 wt.%)会使碳化钨颗粒减少到 10 纳米,改变其形态,并使复合材料中的游离碳含量增加到 5 wt.%。粉末的比表面积增加了 4 到 7 倍(从 20-35 m2/g 增加到 140 m2/g)。通过使用铂阴极,得到的产品被细小的铂颗粒修饰。HTES 方法证明了它在生产碳化钨粉末方面的潜力,这些粉末的特性允许它们在氢进化反应中用作电催化剂。对于在 Na、K|Cl-Na2W2O7-Li2CO3-CO2 体系中合成的 WC|C 复合粉末,相对于普通氢电极,氢进化电位为 -0.02 V,电流密度为 10 mA/cm2 时的过电位 η 为 -110 mV,交换电流为 7.0 ⋅ 10-4 A/cm2 ,塔菲尔斜率为 -85 mV/dec。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of Electrochemical Synthesis Conditions on the Composition, Structure, and Morphology of Tungsten Carbide Powders

Effect of Electrochemical Synthesis Conditions on the Composition, Structure, and Morphology of Tungsten Carbide Powders

Effect of Electrochemical Synthesis Conditions on the Composition, Structure, and Morphology of Tungsten Carbide Powders

High-temperature electrochemical synthesis (HTES) in molten salts is highly promising among the up-to-date methods for the production of carbide powders. Ultrafine composite powders of tungsten carbides (WC|C, WC|C|Pt, W2C|WC, and W2C|W) were synthesized using the HTES method in electrolytic baths with different chemical compositions under various synthesis conditions (cathode current density, CO2 pressure in the electrolyzer, temperature, and cathode material). Composite powders (up to 3 wt.% free carbon) with a WC particle size of 20–30 nm were prepared using Na, K|Cl (1 : 1)–Na2W2O7 (6.4 wt.%)–CO2 (1.25 MPa) and Na, K|Cl (1 : 1)–Na2WO4 (12.0 wt.%)–NaPO3 (0.7 wt. %)–CO2 (1.25 MPa) electrolytic baths at a temperature of 750°C. When the CO2 pressure was reduced to 0.75 MPa, composite W2C|WC powders formed at the cathode. The ratio of carbide phases in the composites depended on the initial concentration of tungsten salts in the electrolyte and on the CO2 gas pressure in the electrolyzer. The addition of Li2CO3 (4.5 wt.%) to the electrolytic salt mixture decreased the tungsten carbide particles to 10 nm, changed their morphology, and increased the free carbon content in the composite up to 5 wt.%. The specific surface area of the powder increased by a factor of 4 to 7 (from 20–35 to 140 m2/g). The resulting products were modified with fine platinum particles through the use of platinum cathodes. The HTES method demonstrated its potential for producing tungsten carbide powders with the properties allowing their use as electrocatalysts in the hydrogen evolution reaction. For the WC|C composite powders synthesized in the Na, K|Cl–Na2W2O7–Li2CO3–CO2 system, the hydrogen evolution potential was –0.02 V relative to the normal hydrogen electrode, the overpotential η at a current density of 10 mA/cm2 was –110 mV, the exchange current was 7.0 ⋅ 10–4 A/cm2, and the Tafel slope was –85 mV/dec.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Powder Metallurgy and Metal Ceramics
Powder Metallurgy and Metal Ceramics 工程技术-材料科学:硅酸盐
CiteScore
1.90
自引率
20.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: Powder Metallurgy and Metal Ceramics covers topics of the theory, manufacturing technology, and properties of powder; technology of forming processes; the technology of sintering, heat treatment, and thermo-chemical treatment; properties of sintered materials; and testing methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信