{"title":"一类平滑、可能具有数据适应性的经验共存系数的重采样技术","authors":"Ivan Kojadinovic , Bingqing Yi","doi":"10.1016/j.jspi.2023.106132","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the validity of two resampling techniques when carrying out inference on the underlying unknown copula<span> using a recently proposed class of smooth, possibly data-adaptive nonparametric estimators that contains empirical Bernstein copulas (and thus the empirical beta copula). Following Kiriliouk et al. (2021), the first resampling technique is based on drawing samples from the smooth estimator and can only can be used in the case of independent observations. The second technique is a smooth extension of the so-called sequential dependent multiplier bootstrap<span> and can thus be used in a time series setting and, possibly, for change-point analysis. The two studied resampling schemes are applied to confidence interval construction and the offline detection of changes in the cross-sectional dependence of multivariate time series, respectively. Monte Carlo experiments confirm the possible advantages of such smooth inference procedures over their non-smooth counterparts. A by-product of this work is the study of the weak consistency and finite-sample performance of two classes of smooth estimators of the first-order partial derivatives of a copula which can have applications in mean and quantile regression.</span></span></p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resampling techniques for a class of smooth, possibly data-adaptive empirical copulas\",\"authors\":\"Ivan Kojadinovic , Bingqing Yi\",\"doi\":\"10.1016/j.jspi.2023.106132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the validity of two resampling techniques when carrying out inference on the underlying unknown copula<span> using a recently proposed class of smooth, possibly data-adaptive nonparametric estimators that contains empirical Bernstein copulas (and thus the empirical beta copula). Following Kiriliouk et al. (2021), the first resampling technique is based on drawing samples from the smooth estimator and can only can be used in the case of independent observations. The second technique is a smooth extension of the so-called sequential dependent multiplier bootstrap<span> and can thus be used in a time series setting and, possibly, for change-point analysis. The two studied resampling schemes are applied to confidence interval construction and the offline detection of changes in the cross-sectional dependence of multivariate time series, respectively. Monte Carlo experiments confirm the possible advantages of such smooth inference procedures over their non-smooth counterparts. A by-product of this work is the study of the weak consistency and finite-sample performance of two classes of smooth estimators of the first-order partial derivatives of a copula which can have applications in mean and quantile regression.</span></span></p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375823001015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375823001015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Resampling techniques for a class of smooth, possibly data-adaptive empirical copulas
We investigate the validity of two resampling techniques when carrying out inference on the underlying unknown copula using a recently proposed class of smooth, possibly data-adaptive nonparametric estimators that contains empirical Bernstein copulas (and thus the empirical beta copula). Following Kiriliouk et al. (2021), the first resampling technique is based on drawing samples from the smooth estimator and can only can be used in the case of independent observations. The second technique is a smooth extension of the so-called sequential dependent multiplier bootstrap and can thus be used in a time series setting and, possibly, for change-point analysis. The two studied resampling schemes are applied to confidence interval construction and the offline detection of changes in the cross-sectional dependence of multivariate time series, respectively. Monte Carlo experiments confirm the possible advantages of such smooth inference procedures over their non-smooth counterparts. A by-product of this work is the study of the weak consistency and finite-sample performance of two classes of smooth estimators of the first-order partial derivatives of a copula which can have applications in mean and quantile regression.