广义函数代数上的随机伯努利方程

Pub Date : 2023-12-08 DOI:10.1007/s11253-023-02258-8
Hafedh Rguigui
{"title":"广义函数代数上的随机伯努利方程","authors":"Hafedh Rguigui","doi":"10.1007/s11253-023-02258-8","DOIUrl":null,"url":null,"abstract":"<p>Based on the topological dual space <span>\\({\\mathcal{F}}_{\\theta }^{*}\\left({\\mathcal{S}{\\prime}}_{\\mathbb{C}}\\right)\\)</span> of the space of entire functions with θ-exponential growth of finite type, we introduce a generalized stochastic Bernoulli–Wick differential equation (or a stochastic Bernoulli equation on the algebra of generalized functions) by using the Wick product of elements in <span>\\({\\mathcal{F}}_{\\theta }^{*}\\left({\\mathcal{S}{\\prime}}_{\\mathbb{C}}\\right)\\)</span>. This equation is an infinite-dimensional analog of the classical Bernoulli differential equation for stochastic distributions. This stochastic differential equation is solved and exemplified by several examples.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic Bernoulli Equation on the Algebra of Generalized Functions\",\"authors\":\"Hafedh Rguigui\",\"doi\":\"10.1007/s11253-023-02258-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Based on the topological dual space <span>\\\\({\\\\mathcal{F}}_{\\\\theta }^{*}\\\\left({\\\\mathcal{S}{\\\\prime}}_{\\\\mathbb{C}}\\\\right)\\\\)</span> of the space of entire functions with θ-exponential growth of finite type, we introduce a generalized stochastic Bernoulli–Wick differential equation (or a stochastic Bernoulli equation on the algebra of generalized functions) by using the Wick product of elements in <span>\\\\({\\\\mathcal{F}}_{\\\\theta }^{*}\\\\left({\\\\mathcal{S}{\\\\prime}}_{\\\\mathbb{C}}\\\\right)\\\\)</span>. This equation is an infinite-dimensional analog of the classical Bernoulli differential equation for stochastic distributions. This stochastic differential equation is solved and exemplified by several examples.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-023-02258-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-023-02258-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于有限类型的θ-指数增长的全函数空间的拓扑对偶空间({\mathcal{F}}_{\theta }^{*}left({\mathcal{S}{\prime}}_{\mathbb{C}}right)\ )、通过使用 \({\mathcal{F}}_{\theta }^{*}left({\mathcal{S}{\prime}}_{\mathbb{C}}\right)\ 中元素的 Wick 积,我们引入了广义随机伯努利-威克微分方程(或广义函数代数上的随机伯努利方程)。这个方程是随机分布的经典伯努利微分方程的无穷维类似方程。这个随机微分方程由几个例子求解和举例说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Stochastic Bernoulli Equation on the Algebra of Generalized Functions

Based on the topological dual space \({\mathcal{F}}_{\theta }^{*}\left({\mathcal{S}{\prime}}_{\mathbb{C}}\right)\) of the space of entire functions with θ-exponential growth of finite type, we introduce a generalized stochastic Bernoulli–Wick differential equation (or a stochastic Bernoulli equation on the algebra of generalized functions) by using the Wick product of elements in \({\mathcal{F}}_{\theta }^{*}\left({\mathcal{S}{\prime}}_{\mathbb{C}}\right)\). This equation is an infinite-dimensional analog of the classical Bernoulli differential equation for stochastic distributions. This stochastic differential equation is solved and exemplified by several examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信