{"title":"广义函数代数上的随机伯努利方程","authors":"Hafedh Rguigui","doi":"10.1007/s11253-023-02258-8","DOIUrl":null,"url":null,"abstract":"<p>Based on the topological dual space <span>\\({\\mathcal{F}}_{\\theta }^{*}\\left({\\mathcal{S}{\\prime}}_{\\mathbb{C}}\\right)\\)</span> of the space of entire functions with θ-exponential growth of finite type, we introduce a generalized stochastic Bernoulli–Wick differential equation (or a stochastic Bernoulli equation on the algebra of generalized functions) by using the Wick product of elements in <span>\\({\\mathcal{F}}_{\\theta }^{*}\\left({\\mathcal{S}{\\prime}}_{\\mathbb{C}}\\right)\\)</span>. This equation is an infinite-dimensional analog of the classical Bernoulli differential equation for stochastic distributions. This stochastic differential equation is solved and exemplified by several examples.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic Bernoulli Equation on the Algebra of Generalized Functions\",\"authors\":\"Hafedh Rguigui\",\"doi\":\"10.1007/s11253-023-02258-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Based on the topological dual space <span>\\\\({\\\\mathcal{F}}_{\\\\theta }^{*}\\\\left({\\\\mathcal{S}{\\\\prime}}_{\\\\mathbb{C}}\\\\right)\\\\)</span> of the space of entire functions with θ-exponential growth of finite type, we introduce a generalized stochastic Bernoulli–Wick differential equation (or a stochastic Bernoulli equation on the algebra of generalized functions) by using the Wick product of elements in <span>\\\\({\\\\mathcal{F}}_{\\\\theta }^{*}\\\\left({\\\\mathcal{S}{\\\\prime}}_{\\\\mathbb{C}}\\\\right)\\\\)</span>. This equation is an infinite-dimensional analog of the classical Bernoulli differential equation for stochastic distributions. This stochastic differential equation is solved and exemplified by several examples.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-023-02258-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-023-02258-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stochastic Bernoulli Equation on the Algebra of Generalized Functions
Based on the topological dual space \({\mathcal{F}}_{\theta }^{*}\left({\mathcal{S}{\prime}}_{\mathbb{C}}\right)\) of the space of entire functions with θ-exponential growth of finite type, we introduce a generalized stochastic Bernoulli–Wick differential equation (or a stochastic Bernoulli equation on the algebra of generalized functions) by using the Wick product of elements in \({\mathcal{F}}_{\theta }^{*}\left({\mathcal{S}{\prime}}_{\mathbb{C}}\right)\). This equation is an infinite-dimensional analog of the classical Bernoulli differential equation for stochastic distributions. This stochastic differential equation is solved and exemplified by several examples.