{"title":"论具有延迟论证的抽象微分方程的指数二分法","authors":"Andrii Chaikovs’kyi, Oksana Lagoda","doi":"10.1007/s11253-023-02263-x","DOIUrl":null,"url":null,"abstract":"<p>We consider linear differential equations of the first order with delayed arguments in a Banach space. We establish conditions for the operator coefficients necessary for the existence of exponential dichotomy on the real axis. It is proved that the analyzed differential equation is equivalent to a difference equation in a certain space. It is shown that, under the conditions of existence and uniqueness of a solution bounded on the entire real axis, the condition of exponential dichotomy is also satisfied for any known bounded function. We also deduce the explicit formula for projectors, which form this dichotomy in the case of a single delay.</p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Exponential Dichotomy for Abstract Differential Equations with Delayed Argument\",\"authors\":\"Andrii Chaikovs’kyi, Oksana Lagoda\",\"doi\":\"10.1007/s11253-023-02263-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider linear differential equations of the first order with delayed arguments in a Banach space. We establish conditions for the operator coefficients necessary for the existence of exponential dichotomy on the real axis. It is proved that the analyzed differential equation is equivalent to a difference equation in a certain space. It is shown that, under the conditions of existence and uniqueness of a solution bounded on the entire real axis, the condition of exponential dichotomy is also satisfied for any known bounded function. We also deduce the explicit formula for projectors, which form this dichotomy in the case of a single delay.</p>\",\"PeriodicalId\":49406,\"journal\":{\"name\":\"Ukrainian Mathematical Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-023-02263-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-023-02263-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On Exponential Dichotomy for Abstract Differential Equations with Delayed Argument
We consider linear differential equations of the first order with delayed arguments in a Banach space. We establish conditions for the operator coefficients necessary for the existence of exponential dichotomy on the real axis. It is proved that the analyzed differential equation is equivalent to a difference equation in a certain space. It is shown that, under the conditions of existence and uniqueness of a solution bounded on the entire real axis, the condition of exponential dichotomy is also satisfied for any known bounded function. We also deduce the explicit formula for projectors, which form this dichotomy in the case of a single delay.
期刊介绍:
Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries.
Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.