论具有延迟论证的抽象微分方程的指数二分法

Pub Date : 2023-12-08 DOI:10.1007/s11253-023-02263-x
Andrii Chaikovs’kyi, Oksana Lagoda
{"title":"论具有延迟论证的抽象微分方程的指数二分法","authors":"Andrii Chaikovs’kyi, Oksana Lagoda","doi":"10.1007/s11253-023-02263-x","DOIUrl":null,"url":null,"abstract":"<p>We consider linear differential equations of the first order with delayed arguments in a Banach space. We establish conditions for the operator coefficients necessary for the existence of exponential dichotomy on the real axis. It is proved that the analyzed differential equation is equivalent to a difference equation in a certain space. It is shown that, under the conditions of existence and uniqueness of a solution bounded on the entire real axis, the condition of exponential dichotomy is also satisfied for any known bounded function. We also deduce the explicit formula for projectors, which form this dichotomy in the case of a single delay.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Exponential Dichotomy for Abstract Differential Equations with Delayed Argument\",\"authors\":\"Andrii Chaikovs’kyi, Oksana Lagoda\",\"doi\":\"10.1007/s11253-023-02263-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider linear differential equations of the first order with delayed arguments in a Banach space. We establish conditions for the operator coefficients necessary for the existence of exponential dichotomy on the real axis. It is proved that the analyzed differential equation is equivalent to a difference equation in a certain space. It is shown that, under the conditions of existence and uniqueness of a solution bounded on the entire real axis, the condition of exponential dichotomy is also satisfied for any known bounded function. We also deduce the explicit formula for projectors, which form this dichotomy in the case of a single delay.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-023-02263-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-023-02263-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是巴拿赫空间中具有延迟参数的一阶线性微分方程。我们建立了在实轴上存在指数二分法所需的算子系数条件。我们证明了所分析的微分方程等价于某个空间中的差分方程。结果表明,在整个实轴上有界的解的存在性和唯一性条件下,对于任何已知的有界函数,指数二分法的条件也是满足的。我们还推导出了投影器的明确公式,它在单延迟情况下形成了这种二分法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On Exponential Dichotomy for Abstract Differential Equations with Delayed Argument

We consider linear differential equations of the first order with delayed arguments in a Banach space. We establish conditions for the operator coefficients necessary for the existence of exponential dichotomy on the real axis. It is proved that the analyzed differential equation is equivalent to a difference equation in a certain space. It is shown that, under the conditions of existence and uniqueness of a solution bounded on the entire real axis, the condition of exponential dichotomy is also satisfied for any known bounded function. We also deduce the explicit formula for projectors, which form this dichotomy in the case of a single delay.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信