利用 1 位 ADC 增强大规模 MIMO 的数据检测功能

Amin Radbord, Italo Atzeni, Antti Tolli
{"title":"利用 1 位 ADC 增强大规模 MIMO 的数据检测功能","authors":"Amin Radbord, Italo Atzeni, Antti Tolli","doi":"arxiv-2312.04183","DOIUrl":null,"url":null,"abstract":"We present new insightful results on the uplink data detection for massive\nmultiple-input multiple-output systems with 1-bit analog-to-digital converters.\nThe expected values of the soft-estimated symbols (i.e., after the linear\ncombining and prior to the data detection) have been recently characterized for\nmultiple user equipments (UEs) and maximum ratio combining (MRC) receiver at\nthe base station. In this paper, we first provide a numerical evaluation of the\nexpected value of the soft-estimated symbols with zero-forcing (ZF) and minimum\nmean squared error (MMSE) receivers for a multi-UE setting with correlated\nRayleigh fading. Then, we propose a joint data detection (JD) strategy, which\nexploits the interdependence among the soft-estimated symbols of the\ninterfering UEs, along with its low-complexity variant. These strategies are\ncompared with a naive approach that adapts the maximum-likelihood data\ndetection to the 1-bit quantization. Numerical results show that ZF and MMSE\nprovide considerable gains over MRC in terms of symbol error rate. Moreover,\nthe proposed JD and its low-complexity variant provide a significant boost in\ncomparison with the single-UE data detection.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced data Detection for Massive MIMO with 1-Bit ADCs\",\"authors\":\"Amin Radbord, Italo Atzeni, Antti Tolli\",\"doi\":\"arxiv-2312.04183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present new insightful results on the uplink data detection for massive\\nmultiple-input multiple-output systems with 1-bit analog-to-digital converters.\\nThe expected values of the soft-estimated symbols (i.e., after the linear\\ncombining and prior to the data detection) have been recently characterized for\\nmultiple user equipments (UEs) and maximum ratio combining (MRC) receiver at\\nthe base station. In this paper, we first provide a numerical evaluation of the\\nexpected value of the soft-estimated symbols with zero-forcing (ZF) and minimum\\nmean squared error (MMSE) receivers for a multi-UE setting with correlated\\nRayleigh fading. Then, we propose a joint data detection (JD) strategy, which\\nexploits the interdependence among the soft-estimated symbols of the\\ninterfering UEs, along with its low-complexity variant. These strategies are\\ncompared with a naive approach that adapts the maximum-likelihood data\\ndetection to the 1-bit quantization. Numerical results show that ZF and MMSE\\nprovide considerable gains over MRC in terms of symbol error rate. Moreover,\\nthe proposed JD and its low-complexity variant provide a significant boost in\\ncomparison with the single-UE data detection.\",\"PeriodicalId\":501433,\"journal\":{\"name\":\"arXiv - CS - Information Theory\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.04183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.04183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

软估计符号的预期值(即在线性组合之后和数据检测之前)最近在多个用户设备(UE)和基站最大比值组合(MRC)接收机上得到了表征。在本文中,我们首先对具有相关雷利衰落的多用户设备(UE)环境下的零强迫(ZF)和最小均方误差(MMSE)接收器的软估计符号预期值进行了数值评估。然后,我们提出了一种联合数据检测(JD)策略,该策略利用了干扰 UE 的软估计符号之间的相互依赖性,以及其低复杂度变体。这些策略与将最大似然数据检测适应于 1 位量化的天真方法进行了比较。数值结果表明,就符号错误率而言,ZF 和 MMSE 比 MRC 有相当大的提高。此外,与单 UE 数据检测相比,所提出的 JD 及其低复杂度变体也有显著提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced data Detection for Massive MIMO with 1-Bit ADCs
We present new insightful results on the uplink data detection for massive multiple-input multiple-output systems with 1-bit analog-to-digital converters. The expected values of the soft-estimated symbols (i.e., after the linear combining and prior to the data detection) have been recently characterized for multiple user equipments (UEs) and maximum ratio combining (MRC) receiver at the base station. In this paper, we first provide a numerical evaluation of the expected value of the soft-estimated symbols with zero-forcing (ZF) and minimum mean squared error (MMSE) receivers for a multi-UE setting with correlated Rayleigh fading. Then, we propose a joint data detection (JD) strategy, which exploits the interdependence among the soft-estimated symbols of the interfering UEs, along with its low-complexity variant. These strategies are compared with a naive approach that adapts the maximum-likelihood data detection to the 1-bit quantization. Numerical results show that ZF and MMSE provide considerable gains over MRC in terms of symbol error rate. Moreover, the proposed JD and its low-complexity variant provide a significant boost in comparison with the single-UE data detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信