可扩展和通用的路径损耗图预测

Ju-Hyung Lee, Andreas F. Molisch
{"title":"可扩展和通用的路径损耗图预测","authors":"Ju-Hyung Lee, Andreas F. Molisch","doi":"arxiv-2312.03950","DOIUrl":null,"url":null,"abstract":"Large-scale channel prediction, i.e., estimation of the pathloss from\ngeographical/morphological/building maps, is an essential component of wireless\nnetwork planning. Ray tracing (RT)-based methods have been widely used for many\nyears, but they require significant computational effort that may become\nprohibitive with the increased network densification and/or use of higher\nfrequencies in B5G/6G systems. In this paper, we propose a data-driven,\nmodel-free pathloss map prediction (PMP) method, called PMNet. PMNet uses a\nsupervised learning approach: it is trained on a limited amount of RT (or\nchannel measurement) data and map data. Once trained, PMNet can predict\npathloss over location with high accuracy (an RMSE level of $10^{-2}$) in a few\nmilliseconds. We further extend PMNet by employing transfer learning (TL). TL\nallows PMNet to learn a new network scenario quickly (x5.6 faster training) and\nefficiently (using x4.5 less data) by transferring knowledge from a pre-trained\nmodel, while retaining accuracy. Our results demonstrate that PMNet is a\nscalable and generalizable ML-based PMP method, showing its potential to be\nused in several network optimization applications.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Scalable and Generalizable Pathloss Map Prediction\",\"authors\":\"Ju-Hyung Lee, Andreas F. Molisch\",\"doi\":\"arxiv-2312.03950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large-scale channel prediction, i.e., estimation of the pathloss from\\ngeographical/morphological/building maps, is an essential component of wireless\\nnetwork planning. Ray tracing (RT)-based methods have been widely used for many\\nyears, but they require significant computational effort that may become\\nprohibitive with the increased network densification and/or use of higher\\nfrequencies in B5G/6G systems. In this paper, we propose a data-driven,\\nmodel-free pathloss map prediction (PMP) method, called PMNet. PMNet uses a\\nsupervised learning approach: it is trained on a limited amount of RT (or\\nchannel measurement) data and map data. Once trained, PMNet can predict\\npathloss over location with high accuracy (an RMSE level of $10^{-2}$) in a few\\nmilliseconds. We further extend PMNet by employing transfer learning (TL). TL\\nallows PMNet to learn a new network scenario quickly (x5.6 faster training) and\\nefficiently (using x4.5 less data) by transferring knowledge from a pre-trained\\nmodel, while retaining accuracy. Our results demonstrate that PMNet is a\\nscalable and generalizable ML-based PMP method, showing its potential to be\\nused in several network optimization applications.\",\"PeriodicalId\":501433,\"journal\":{\"name\":\"arXiv - CS - Information Theory\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.03950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.03950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大规模信道预测,即根据地理/地貌/建筑物地图估算路径损耗,是无线网络规划的重要组成部分。基于光线跟踪(RT)的方法已被广泛使用多年,但这些方法需要大量的计算工作,而随着网络密度的增加和/或 B5G/6G 系统中更高频率的使用,这些计算工作可能会变得非常困难。在本文中,我们提出了一种数据驱动、无模型的路径损耗图预测(PMP)方法,称为 PMNet。PMNet 采用监督学习方法:在有限的 RT(或信道测量)数据和地图数据上对其进行训练。训练完成后,PMNet 可以在几毫秒内高精度(RMSE 水平为 10^{-2}$)地预测位置上的路径损耗。我们通过采用迁移学习(TL)进一步扩展了 PMNet。迁移学习允许 PMNet 通过从预先训练的模型中迁移知识,快速(训练速度快 x5.6)、高效(使用的数据少 x4.5)地学习新的网络场景,同时保持准确性。我们的研究结果表明,PMNet 是一种可升级、可推广的基于 ML 的 PMP 方法,显示了它在多个网络优化应用中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Scalable and Generalizable Pathloss Map Prediction
Large-scale channel prediction, i.e., estimation of the pathloss from geographical/morphological/building maps, is an essential component of wireless network planning. Ray tracing (RT)-based methods have been widely used for many years, but they require significant computational effort that may become prohibitive with the increased network densification and/or use of higher frequencies in B5G/6G systems. In this paper, we propose a data-driven, model-free pathloss map prediction (PMP) method, called PMNet. PMNet uses a supervised learning approach: it is trained on a limited amount of RT (or channel measurement) data and map data. Once trained, PMNet can predict pathloss over location with high accuracy (an RMSE level of $10^{-2}$) in a few milliseconds. We further extend PMNet by employing transfer learning (TL). TL allows PMNet to learn a new network scenario quickly (x5.6 faster training) and efficiently (using x4.5 less data) by transferring knowledge from a pre-trained model, while retaining accuracy. Our results demonstrate that PMNet is a scalable and generalizable ML-based PMP method, showing its potential to be used in several network optimization applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信