根据模型对浮游动物在原位中层宇宙中的宽带声学反向散射进行分类

IF 3.1 2区 农林科学 Q1 FISHERIES
Muriel Dunn, Chelsey McGowan-Yallop, Geir Pedersen, Stig Falk-Petersen, Malin Daase, Kim Last, Tom J Langbehn, Sophie Fielding, Andrew S Brierley, Finlo Cottier, Sünnje L Basedow, Lionel Camus, Maxime Geoffroy
{"title":"根据模型对浮游动物在原位中层宇宙中的宽带声学反向散射进行分类","authors":"Muriel Dunn, Chelsey McGowan-Yallop, Geir Pedersen, Stig Falk-Petersen, Malin Daase, Kim Last, Tom J Langbehn, Sophie Fielding, Andrew S Brierley, Finlo Cottier, Sünnje L Basedow, Lionel Camus, Maxime Geoffroy","doi":"10.1093/icesjms/fsad192","DOIUrl":null,"url":null,"abstract":"Classification of zooplankton to species with broadband echosounder data could increase the taxonomic resolution of acoustic surveys and reduce the dependence on net and trawl samples for ‘ground truthing’. Supervised classification with broadband echosounder data is limited by the acquisition of validated data required to train machine learning algorithms (‘classifiers’). We tested the hypothesis that acoustic scattering models could be used to train classifiers for remote classification of zooplankton. Three classifiers were trained with data from scattering models of four Arctic zooplankton groups (copepods, euphausiids, chaetognaths, and hydrozoans). We evaluated classifier predictions against observations of a mixed zooplankton community in a submerged purpose-built mesocosm (12 m3) insonified with broadband transmissions (185–255 kHz). The mesocosm was deployed from a wharf in Ny-Ålesund, Svalbard, during the Arctic polar night in January 2022. We detected 7722 tracked single targets, which were used to evaluate the classifier predictions of measured zooplankton targets. The classifiers could differentiate copepods from the other groups reasonably well, but they could not differentiate euphausiids, chaetognaths, and hydrozoans reliably due to the similarities in their modelled target spectra. We recommend that model-informed classification of zooplankton from broadband acoustic signals be used with caution until a better understanding of in situ target spectra variability is gained.","PeriodicalId":51072,"journal":{"name":"ICES Journal of Marine Science","volume":"276 2 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-informed classification of broadband acoustic backscatter from zooplankton in an in situ mesocosm\",\"authors\":\"Muriel Dunn, Chelsey McGowan-Yallop, Geir Pedersen, Stig Falk-Petersen, Malin Daase, Kim Last, Tom J Langbehn, Sophie Fielding, Andrew S Brierley, Finlo Cottier, Sünnje L Basedow, Lionel Camus, Maxime Geoffroy\",\"doi\":\"10.1093/icesjms/fsad192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification of zooplankton to species with broadband echosounder data could increase the taxonomic resolution of acoustic surveys and reduce the dependence on net and trawl samples for ‘ground truthing’. Supervised classification with broadband echosounder data is limited by the acquisition of validated data required to train machine learning algorithms (‘classifiers’). We tested the hypothesis that acoustic scattering models could be used to train classifiers for remote classification of zooplankton. Three classifiers were trained with data from scattering models of four Arctic zooplankton groups (copepods, euphausiids, chaetognaths, and hydrozoans). We evaluated classifier predictions against observations of a mixed zooplankton community in a submerged purpose-built mesocosm (12 m3) insonified with broadband transmissions (185–255 kHz). The mesocosm was deployed from a wharf in Ny-Ålesund, Svalbard, during the Arctic polar night in January 2022. We detected 7722 tracked single targets, which were used to evaluate the classifier predictions of measured zooplankton targets. The classifiers could differentiate copepods from the other groups reasonably well, but they could not differentiate euphausiids, chaetognaths, and hydrozoans reliably due to the similarities in their modelled target spectra. We recommend that model-informed classification of zooplankton from broadband acoustic signals be used with caution until a better understanding of in situ target spectra variability is gained.\",\"PeriodicalId\":51072,\"journal\":{\"name\":\"ICES Journal of Marine Science\",\"volume\":\"276 2 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICES Journal of Marine Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/icesjms/fsad192\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICES Journal of Marine Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/icesjms/fsad192","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

摘要

利用宽带回声测深仪数据对浮游动物进行物种分类,可提高声学调查的分类分辨率,并减少 "地面实况 "对渔网和拖网样本的依赖。利用宽带回声测深仪数据进行监督分类受到了训练机器学习算法("分类器")所需的验证数据获取的限制。我们测试了一种假设,即声学散射模型可用于训练浮游动物远程分类的分类器。我们利用四个北极浮游动物类群(桡足类、裙带菜类、糠虾类和水螅类)的散射模型数据训练了三个分类器。我们根据对水下专用介观浮游生物群落(12 立方米)的观察结果,对分类器的预测结果进行了评估,该介观浮游生物群落采用了宽带传输(185-255 千赫)。2022 年 1 月北极极夜期间,我们在斯瓦尔巴特群岛尼-奥勒松的一个码头上部署了该介观宇宙。我们探测到了 7722 个跟踪的单个目标,这些目标用于评估分类器对测量到的浮游动物目标的预测。分类器可以很好地将桡足类与其他类群区分开来,但由于其建模目标光谱的相似性,它们无法可靠地区分出裙带菜类、糠虾类和水螅类。我们建议,在更好地了解现场目标光谱的变化之前,应谨慎使用根据宽带声学信号进行的浮游动物模型分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model-informed classification of broadband acoustic backscatter from zooplankton in an in situ mesocosm
Classification of zooplankton to species with broadband echosounder data could increase the taxonomic resolution of acoustic surveys and reduce the dependence on net and trawl samples for ‘ground truthing’. Supervised classification with broadband echosounder data is limited by the acquisition of validated data required to train machine learning algorithms (‘classifiers’). We tested the hypothesis that acoustic scattering models could be used to train classifiers for remote classification of zooplankton. Three classifiers were trained with data from scattering models of four Arctic zooplankton groups (copepods, euphausiids, chaetognaths, and hydrozoans). We evaluated classifier predictions against observations of a mixed zooplankton community in a submerged purpose-built mesocosm (12 m3) insonified with broadband transmissions (185–255 kHz). The mesocosm was deployed from a wharf in Ny-Ålesund, Svalbard, during the Arctic polar night in January 2022. We detected 7722 tracked single targets, which were used to evaluate the classifier predictions of measured zooplankton targets. The classifiers could differentiate copepods from the other groups reasonably well, but they could not differentiate euphausiids, chaetognaths, and hydrozoans reliably due to the similarities in their modelled target spectra. We recommend that model-informed classification of zooplankton from broadband acoustic signals be used with caution until a better understanding of in situ target spectra variability is gained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ICES Journal of Marine Science
ICES Journal of Marine Science 农林科学-海洋学
CiteScore
6.60
自引率
12.10%
发文量
207
审稿时长
6-16 weeks
期刊介绍: The ICES Journal of Marine Science publishes original articles, opinion essays (“Food for Thought”), visions for the future (“Quo Vadimus”), and critical reviews that contribute to our scientific understanding of marine systems and the impact of human activities on them. The Journal also serves as a foundation for scientific advice across the broad spectrum of management and conservation issues related to the marine environment. Oceanography (e.g. productivity-determining processes), marine habitats, living resources, and related topics constitute the key elements of papers considered for publication. This includes economic, social, and public administration studies to the extent that they are directly related to management of the seas and are of general interest to marine scientists. Integrated studies that bridge gaps between traditional disciplines are particularly welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信