从无时间标签的数据中重建动力系统

Zhijun Zeng, Pipi Hu, Chenglong Bao, Yi Zhu, Zuoqiang Shi
{"title":"从无时间标签的数据中重建动力系统","authors":"Zhijun Zeng, Pipi Hu, Chenglong Bao, Yi Zhu, Zuoqiang Shi","doi":"arxiv-2312.04038","DOIUrl":null,"url":null,"abstract":"In this paper, we study the method to reconstruct dynamical systems from data\nwithout time labels. Data without time labels appear in many applications, such\nas molecular dynamics, single-cell RNA sequencing etc. Reconstruction of\ndynamical system from time sequence data has been studied extensively. However,\nthese methods do not apply if time labels are unknown. Without time labels,\nsequence data becomes distribution data. Based on this observation, we propose\nto treat the data as samples from a probability distribution and try to\nreconstruct the underlying dynamical system by minimizing the distribution\nloss, sliced Wasserstein distance more specifically. Extensive experiment\nresults demonstrate the effectiveness of the proposed method.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"114 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconstruction of dynamical systems from data without time labels\",\"authors\":\"Zhijun Zeng, Pipi Hu, Chenglong Bao, Yi Zhu, Zuoqiang Shi\",\"doi\":\"arxiv-2312.04038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the method to reconstruct dynamical systems from data\\nwithout time labels. Data without time labels appear in many applications, such\\nas molecular dynamics, single-cell RNA sequencing etc. Reconstruction of\\ndynamical system from time sequence data has been studied extensively. However,\\nthese methods do not apply if time labels are unknown. Without time labels,\\nsequence data becomes distribution data. Based on this observation, we propose\\nto treat the data as samples from a probability distribution and try to\\nreconstruct the underlying dynamical system by minimizing the distribution\\nloss, sliced Wasserstein distance more specifically. Extensive experiment\\nresults demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\"114 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.04038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.04038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了从无时间标签的数据中重建动力学系统的方法。无时间标签的数据出现在许多应用中,如分子动力学、单细胞 RNA 测序等。从时间序列数据重建动力学系统的研究已经非常广泛。然而,如果时间标签未知,这些方法就不适用了。没有时间标签,序列数据就变成了分布数据。基于这一观点,我们建议将数据视为概率分布的样本,并尝试通过最小化分布损失(更具体地说,是切片瓦瑟斯坦距离)来重建底层动力系统。大量实验结果证明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconstruction of dynamical systems from data without time labels
In this paper, we study the method to reconstruct dynamical systems from data without time labels. Data without time labels appear in many applications, such as molecular dynamics, single-cell RNA sequencing etc. Reconstruction of dynamical system from time sequence data has been studied extensively. However, these methods do not apply if time labels are unknown. Without time labels, sequence data becomes distribution data. Based on this observation, we propose to treat the data as samples from a probability distribution and try to reconstruct the underlying dynamical system by minimizing the distribution loss, sliced Wasserstein distance more specifically. Extensive experiment results demonstrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信