高阶 II CAT(0) 空间

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Stephan Stadler
{"title":"高阶 II CAT(0) 空间","authors":"Stephan Stadler","doi":"10.1007/s00222-023-01230-4","DOIUrl":null,"url":null,"abstract":"<p>This belongs to a series of papers motivated by Ballmann’s Higher Rank Rigidity Conjecture. We prove the following. Let <span>\\(X\\)</span> be a CAT(0) space with a geometric group action <span>\\(\\Gamma \\curvearrowright X\\)</span>. Suppose that every geodesic in <span>\\(X\\)</span> lies in an <span>\\(n\\)</span>-flat, <span>\\(n\\geq 2\\)</span>. If <span>\\(X\\)</span> contains a periodic <span>\\(n\\)</span>-flat which does not bound a flat <span>\\((n+1)\\)</span>-half-space, then <span>\\(X\\)</span> is a Riemannian symmetric space, a Euclidean building or non-trivially splits as a metric product. This generalizes the Higher Rank Rigidity Theorem for Hadamard manifolds with geometric group actions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CAT(0) spaces of higher rank II\",\"authors\":\"Stephan Stadler\",\"doi\":\"10.1007/s00222-023-01230-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This belongs to a series of papers motivated by Ballmann’s Higher Rank Rigidity Conjecture. We prove the following. Let <span>\\\\(X\\\\)</span> be a CAT(0) space with a geometric group action <span>\\\\(\\\\Gamma \\\\curvearrowright X\\\\)</span>. Suppose that every geodesic in <span>\\\\(X\\\\)</span> lies in an <span>\\\\(n\\\\)</span>-flat, <span>\\\\(n\\\\geq 2\\\\)</span>. If <span>\\\\(X\\\\)</span> contains a periodic <span>\\\\(n\\\\)</span>-flat which does not bound a flat <span>\\\\((n+1)\\\\)</span>-half-space, then <span>\\\\(X\\\\)</span> is a Riemannian symmetric space, a Euclidean building or non-trivially splits as a metric product. This generalizes the Higher Rank Rigidity Theorem for Hadamard manifolds with geometric group actions.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00222-023-01230-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-023-01230-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

这属于鲍尔曼高阶刚度猜想激发的一系列论文。我们证明了以下内容。让 \(X\) 是一个具有几何群作用 \(\Gamma \curvearrowright X\) 的 CAT(0) 空间。假设(X)中的每一条大地线都位于一个(n)平面中,(ngeq 2)。如果 \(X\) 包含一个周期性的 \(n\)-flat 而这个周期性的 \(n+1)\)-half 空间并不与平坦的 \((n+1)\)-half 空间相联系,那么 \(X\) 就是一个黎曼对称空间、一个欧几里得建筑或者非三维分裂的度量积。这概括了具有几何群作用的哈达玛流形的高阶刚性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

CAT(0) spaces of higher rank II

CAT(0) spaces of higher rank II

This belongs to a series of papers motivated by Ballmann’s Higher Rank Rigidity Conjecture. We prove the following. Let \(X\) be a CAT(0) space with a geometric group action \(\Gamma \curvearrowright X\). Suppose that every geodesic in \(X\) lies in an \(n\)-flat, \(n\geq 2\). If \(X\) contains a periodic \(n\)-flat which does not bound a flat \((n+1)\)-half-space, then \(X\) is a Riemannian symmetric space, a Euclidean building or non-trivially splits as a metric product. This generalizes the Higher Rank Rigidity Theorem for Hadamard manifolds with geometric group actions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信