论最大化马尔可夫决策过程超额完成目标的概率

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Tanhao Huang, Yanan Dai, Jinwen Chen
{"title":"论最大化马尔可夫决策过程超额完成目标的概率","authors":"Tanhao Huang, Yanan Dai, Jinwen Chen","doi":"10.1007/s11081-023-09870-4","DOIUrl":null,"url":null,"abstract":"<p>This paper studies the dual relation between risk-sensitive control and large deviation control of maximizing the probability for out-performing a target for Markov Decision Processes. To derive the desired duality, we apply a non-linear extension of the Krein-Rutman Theorem to characterize the optimal risk-sensitive value and prove that an optimal policy exists which is stationary and deterministic. The right-hand side derivative of this value function is used to characterize the specific targets which make the duality to hold. It is proved that the optimal policy for the “out-performing” probability can be approximated by the optimal one for the risk-sensitive control. The range of the (right-hand, left-hand side) derivative of the optimal risk-sensitive value function plays an important role. Some essential differences between these two types of optimal control problems are presented.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On maximizing probabilities for over-performing a target for Markov decision processes\",\"authors\":\"Tanhao Huang, Yanan Dai, Jinwen Chen\",\"doi\":\"10.1007/s11081-023-09870-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper studies the dual relation between risk-sensitive control and large deviation control of maximizing the probability for out-performing a target for Markov Decision Processes. To derive the desired duality, we apply a non-linear extension of the Krein-Rutman Theorem to characterize the optimal risk-sensitive value and prove that an optimal policy exists which is stationary and deterministic. The right-hand side derivative of this value function is used to characterize the specific targets which make the duality to hold. It is proved that the optimal policy for the “out-performing” probability can be approximated by the optimal one for the risk-sensitive control. The range of the (right-hand, left-hand side) derivative of the optimal risk-sensitive value function plays an important role. Some essential differences between these two types of optimal control problems are presented.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11081-023-09870-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11081-023-09870-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了马尔可夫决策过程的风险敏感控制与最大化超越目标概率的大偏差控制之间的对偶关系。为了推导出所需的对偶关系,我们应用了 Krein-Rutman 定理的非线性扩展来描述最优风险敏感值,并证明存在静态和确定性的最优策略。该价值函数的右侧导数用于描述使二元性成立的特定目标。证明了 "超额收益 "概率的最优政策可以用风险敏感控制的最优政策来近似。最优风险敏感价值函数(右侧、左侧)导数的范围起着重要作用。本文介绍了这两类最优控制问题之间的一些本质区别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On maximizing probabilities for over-performing a target for Markov decision processes

On maximizing probabilities for over-performing a target for Markov decision processes

This paper studies the dual relation between risk-sensitive control and large deviation control of maximizing the probability for out-performing a target for Markov Decision Processes. To derive the desired duality, we apply a non-linear extension of the Krein-Rutman Theorem to characterize the optimal risk-sensitive value and prove that an optimal policy exists which is stationary and deterministic. The right-hand side derivative of this value function is used to characterize the specific targets which make the duality to hold. It is proved that the optimal policy for the “out-performing” probability can be approximated by the optimal one for the risk-sensitive control. The range of the (right-hand, left-hand side) derivative of the optimal risk-sensitive value function plays an important role. Some essential differences between these two types of optimal control problems are presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信