随机介质中平均粒子流的超指数增长与倍增研究

IF 0.4 Q4 MATHEMATICS, APPLIED
G. Z. Lotova, G. A. Mikhailov
{"title":"随机介质中平均粒子流的超指数增长与倍增研究","authors":"G. Z. Lotova, G. A. Mikhailov","doi":"10.1134/s1995423923040055","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A new correlative-grid approximation for a homogeneous isotropic random field of density is introduced for effective numerical-analytical investigation of overexponential growth of the mean flux of particles with multiplication in a random medium. In this case, the complexity of realization of a particle trajectory is independent of the correlation scale. For the correlative-grid approximation, the possibility of a Gaussian asymptotics of the average rate of particle multiplication is proved for a random field of limited density. It ensures a superexponential growth of the flux in some initial time interval. An estimate of further overexponential flux growth is constructed based on some test computations.</p>","PeriodicalId":43697,"journal":{"name":"Numerical Analysis and Applications","volume":"82 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Overexponential Growth of Mean Particle Flux with Multiplication in Random Medium\",\"authors\":\"G. Z. Lotova, G. A. Mikhailov\",\"doi\":\"10.1134/s1995423923040055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>A new correlative-grid approximation for a homogeneous isotropic random field of density is introduced for effective numerical-analytical investigation of overexponential growth of the mean flux of particles with multiplication in a random medium. In this case, the complexity of realization of a particle trajectory is independent of the correlation scale. For the correlative-grid approximation, the possibility of a Gaussian asymptotics of the average rate of particle multiplication is proved for a random field of limited density. It ensures a superexponential growth of the flux in some initial time interval. An estimate of further overexponential flux growth is constructed based on some test computations.</p>\",\"PeriodicalId\":43697,\"journal\":{\"name\":\"Numerical Analysis and Applications\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1995423923040055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1995423923040055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要 针对均质各向同性随机密度场引入了一种新的相关网格近似方法,用于对随机介质中粒子平均通量的超指数增长进行有效的数值-分析研究。在这种情况下,粒子轨迹实现的复杂性与相关尺度无关。就相关网格近似而言,对于有限密度的随机场,粒子倍增平均速率的高斯渐近线的可能性得到了证明。它确保了通量在某些初始时间间隔内的超指数增长。根据一些测试计算,构建了进一步超指数通量增长的估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigation of Overexponential Growth of Mean Particle Flux with Multiplication in Random Medium

Investigation of Overexponential Growth of Mean Particle Flux with Multiplication in Random Medium

Abstract

A new correlative-grid approximation for a homogeneous isotropic random field of density is introduced for effective numerical-analytical investigation of overexponential growth of the mean flux of particles with multiplication in a random medium. In this case, the complexity of realization of a particle trajectory is independent of the correlation scale. For the correlative-grid approximation, the possibility of a Gaussian asymptotics of the average rate of particle multiplication is proved for a random field of limited density. It ensures a superexponential growth of the flux in some initial time interval. An estimate of further overexponential flux growth is constructed based on some test computations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Numerical Analysis and Applications
Numerical Analysis and Applications MATHEMATICS, APPLIED-
CiteScore
1.00
自引率
0.00%
发文量
22
期刊介绍: Numerical Analysis and Applications is the translation of Russian periodical Sibirskii Zhurnal Vychislitel’noi Matematiki (Siberian Journal of Numerical Mathematics) published by the Siberian Branch of the Russian Academy of Sciences Publishing House since 1998. The aim of this journal is to demonstrate, in concentrated form, to the Russian and International Mathematical Community the latest and most important investigations of Siberian numerical mathematicians in various scientific and engineering fields. The journal deals with the following topics: Theory and practice of computational methods, mathematical physics, and other applied fields; Mathematical models of elasticity theory, hydrodynamics, gas dynamics, and geophysics; Parallelizing of algorithms; Models and methods of bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信