一般等量分区下的预期积分近似值

IF 1.4 Q2 MATHEMATICS, APPLIED
Xiaoda Xu, Dianqi Han, Zongyou Li, Xiangqin Lin, Zhidong Qi, Lai Zhang
{"title":"一般等量分区下的预期积分近似值","authors":"Xiaoda Xu,&nbsp;Dianqi Han,&nbsp;Zongyou Li,&nbsp;Xiangqin Lin,&nbsp;Zhidong Qi,&nbsp;Lai Zhang","doi":"10.1016/j.rinam.2023.100419","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we first use an <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo></mrow></math></span>discrepancy bound to give the expected uniform integration approximation for functions in the Sobolev space <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>1</mi></mrow></msup><mrow><mo>(</mo><mi>K</mi><mo>)</mo></mrow></mrow></math></span> equipped with a reproducing kernel. The concept of stratified sampling under general equal measure partition is introduced into the research. For different sampling modes, we obtain a better convergence order <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>d</mi></mrow></mfrac></mrow></msup><mo>)</mo></mrow></mrow></math></span> for the stratified sampling set than for the Monte Carlo sampling method and the Latin hypercube sampling method. Second, we give several expected uniform integration approximation bounds for functions equipped with boundary conditions in the general Sobolev space <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>d</mi><mo>,</mo><mi>q</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span>, where <span><math><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>q</mi></mrow></mfrac><mo>=</mo><mn>1</mn></mrow></math></span>. Probabilistic <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>−</mo></mrow></math></span>discrepancy bound under general equal measure partition, including the case of Hilbert space-filling curve-based sampling are employed. All of these give better general results than simple random sampling, and in particular, Hilbert space-filling curve-based sampling gives better results than simple random sampling for the appropriate sample size.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"21 ","pages":"Article 100419"},"PeriodicalIF":1.4000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037423000651/pdfft?md5=0c369eedb2833391d833aa863df06a51&pid=1-s2.0-S2590037423000651-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Expected integration approximation under general equal measure partition\",\"authors\":\"Xiaoda Xu,&nbsp;Dianqi Han,&nbsp;Zongyou Li,&nbsp;Xiangqin Lin,&nbsp;Zhidong Qi,&nbsp;Lai Zhang\",\"doi\":\"10.1016/j.rinam.2023.100419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we first use an <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo></mrow></math></span>discrepancy bound to give the expected uniform integration approximation for functions in the Sobolev space <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>1</mi></mrow></msup><mrow><mo>(</mo><mi>K</mi><mo>)</mo></mrow></mrow></math></span> equipped with a reproducing kernel. The concept of stratified sampling under general equal measure partition is introduced into the research. For different sampling modes, we obtain a better convergence order <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>d</mi></mrow></mfrac></mrow></msup><mo>)</mo></mrow></mrow></math></span> for the stratified sampling set than for the Monte Carlo sampling method and the Latin hypercube sampling method. Second, we give several expected uniform integration approximation bounds for functions equipped with boundary conditions in the general Sobolev space <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>d</mi><mo>,</mo><mi>q</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span>, where <span><math><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>q</mi></mrow></mfrac><mo>=</mo><mn>1</mn></mrow></math></span>. Probabilistic <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>−</mo></mrow></math></span>discrepancy bound under general equal measure partition, including the case of Hilbert space-filling curve-based sampling are employed. All of these give better general results than simple random sampling, and in particular, Hilbert space-filling curve-based sampling gives better results than simple random sampling for the appropriate sample size.</p></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"21 \",\"pages\":\"Article 100419\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590037423000651/pdfft?md5=0c369eedb2833391d833aa863df06a51&pid=1-s2.0-S2590037423000651-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037423000651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037423000651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首先利用 L2-discrepancy 约束给出了配备重现核的 Sobolev 空间 H1(K) 中函数的期望均匀积分近似值。研究中引入了一般等量分区下分层抽样的概念。对于不同的抽样模式,我们得到了分层抽样集比蒙特卡罗抽样法和拉丁超立方抽样法更好的收敛阶数 O(N-1-1d)。其次,我们给出了一般 Sobolev 空间 Fd,q∗ (其中 1p+1q=1)中带有边界条件的函数的几个预期均匀积分近似边界。我们还采用了一般等量分区下的概率 Lp-差分约束,包括基于希尔伯特空间填充曲线的采样情况。所有这些方法都能给出比简单随机抽样更好的一般结果,特别是基于希尔伯特空间填充曲线的抽样方法在适当的样本量下能给出比简单随机抽样更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expected integration approximation under general equal measure partition

In this paper, we first use an L2discrepancy bound to give the expected uniform integration approximation for functions in the Sobolev space H1(K) equipped with a reproducing kernel. The concept of stratified sampling under general equal measure partition is introduced into the research. For different sampling modes, we obtain a better convergence order O(N11d) for the stratified sampling set than for the Monte Carlo sampling method and the Latin hypercube sampling method. Second, we give several expected uniform integration approximation bounds for functions equipped with boundary conditions in the general Sobolev space Fd,q, where 1p+1q=1. Probabilistic Lpdiscrepancy bound under general equal measure partition, including the case of Hilbert space-filling curve-based sampling are employed. All of these give better general results than simple random sampling, and in particular, Hilbert space-filling curve-based sampling gives better results than simple random sampling for the appropriate sample size.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信