分区、多重zeta值和q括号

Henrik Bachmann, Jan-Willem van Ittersum
{"title":"分区、多重zeta值和q括号","authors":"Henrik Bachmann, Jan-Willem van Ittersum","doi":"10.1007/s00029-023-00893-4","DOIUrl":null,"url":null,"abstract":"<p>We provide a framework for relating certain <i>q</i>-series defined by sums over partitions to multiple zeta values. In particular, we introduce a space of polynomial functions on partitions for which the associated <i>q</i>-series are <i>q</i>-analogues of multiple zeta values. By explicitly describing the (regularized) multiple zeta values one obtains as <span>\\(q\\rightarrow 1\\)</span>, we extend previous results known in this area. Using this together with the fact that other families of functions on partitions, such as shifted symmetric functions, are elements in our space will then give relations among (<i>q</i>-analogues of) multiple zeta values. Conversely, we will show that relations among multiple zeta values can be ‘lifted’ to the world of functions on partitions, which provides new examples of functions for which the associated <i>q</i>-series are quasimodular.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Partitions, multiple zeta values and the q-bracket\",\"authors\":\"Henrik Bachmann, Jan-Willem van Ittersum\",\"doi\":\"10.1007/s00029-023-00893-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We provide a framework for relating certain <i>q</i>-series defined by sums over partitions to multiple zeta values. In particular, we introduce a space of polynomial functions on partitions for which the associated <i>q</i>-series are <i>q</i>-analogues of multiple zeta values. By explicitly describing the (regularized) multiple zeta values one obtains as <span>\\\\(q\\\\rightarrow 1\\\\)</span>, we extend previous results known in this area. Using this together with the fact that other families of functions on partitions, such as shifted symmetric functions, are elements in our space will then give relations among (<i>q</i>-analogues of) multiple zeta values. Conversely, we will show that relations among multiple zeta values can be ‘lifted’ to the world of functions on partitions, which provides new examples of functions for which the associated <i>q</i>-series are quasimodular.</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-023-00893-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-023-00893-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提供了一个框架,将某些由分区上的和定义的 q 序列与多重 zeta 值联系起来。特别是,我们引入了一个分区上的多项式函数空间,其相关的 q 序列是多重 zeta 值的 q-analogues 。通过明确描述(正则化的)多重zeta值,我们扩展了这一领域之前已知的结果。利用这一点,再加上分区上的其他函数族(如移位对称函数)是我们空间中的元素这一事实,就可以得到多重zeta值的(q-类似)关系。反过来,我们将证明多重zeta值之间的关系可以 "提升 "到分区上函数的世界,这就提供了相关q序列是准模态函数的新例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Partitions, multiple zeta values and the q-bracket

Partitions, multiple zeta values and the q-bracket

We provide a framework for relating certain q-series defined by sums over partitions to multiple zeta values. In particular, we introduce a space of polynomial functions on partitions for which the associated q-series are q-analogues of multiple zeta values. By explicitly describing the (regularized) multiple zeta values one obtains as \(q\rightarrow 1\), we extend previous results known in this area. Using this together with the fact that other families of functions on partitions, such as shifted symmetric functions, are elements in our space will then give relations among (q-analogues of) multiple zeta values. Conversely, we will show that relations among multiple zeta values can be ‘lifted’ to the world of functions on partitions, which provides new examples of functions for which the associated q-series are quasimodular.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信