用于高机动性多目标跟踪的混合驱动高斯过程在线学习

IF 2.7 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Qiang Guo, Long Teng, Tianxiang Yin, Yunfei Guo, Xinliang Wu, Wenming Song
{"title":"用于高机动性多目标跟踪的混合驱动高斯过程在线学习","authors":"Qiang Guo, Long Teng, Tianxiang Yin, Yunfei Guo, Xinliang Wu, Wenming Song","doi":"10.1631/fitee.2300348","DOIUrl":null,"url":null,"abstract":"<p>The performance of existing maneuvering target tracking methods for highly maneuvering targets in cluttered environments is unsatisfactory. This paper proposes a hybrid-driven approach for tracking multiple highly maneuvering targets, leveraging the advantages of both data-driven and model-based algorithms. The time-varying constant velocity model is integrated into the Gaussian process (GP) of online learning to improve the performance of GP prediction. This integration is further combined with a generalized probabilistic data association algorithm to realize multi-target tracking. Through the simulations, it has been demonstrated that the hybrid-driven approach exhibits significant performance improvements in comparison with widely used algorithms such as the interactive multi-model method and the data-driven GP motion tracker.</p>","PeriodicalId":12608,"journal":{"name":"Frontiers of Information Technology & Electronic Engineering","volume":"26 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid-driven Gaussian process online learning for highly maneuvering multi-target tracking\",\"authors\":\"Qiang Guo, Long Teng, Tianxiang Yin, Yunfei Guo, Xinliang Wu, Wenming Song\",\"doi\":\"10.1631/fitee.2300348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The performance of existing maneuvering target tracking methods for highly maneuvering targets in cluttered environments is unsatisfactory. This paper proposes a hybrid-driven approach for tracking multiple highly maneuvering targets, leveraging the advantages of both data-driven and model-based algorithms. The time-varying constant velocity model is integrated into the Gaussian process (GP) of online learning to improve the performance of GP prediction. This integration is further combined with a generalized probabilistic data association algorithm to realize multi-target tracking. Through the simulations, it has been demonstrated that the hybrid-driven approach exhibits significant performance improvements in comparison with widely used algorithms such as the interactive multi-model method and the data-driven GP motion tracker.</p>\",\"PeriodicalId\":12608,\"journal\":{\"name\":\"Frontiers of Information Technology & Electronic Engineering\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Information Technology & Electronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1631/fitee.2300348\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Information Technology & Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/fitee.2300348","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

对于杂乱环境中的高机动目标,现有机动目标跟踪方法的性能并不令人满意。本文利用数据驱动算法和基于模型算法的优势,提出了一种混合驱动方法,用于跟踪多个高机动目标。时变恒速模型被集成到在线学习的高斯过程(GP)中,以提高 GP 预测的性能。这种集成进一步与广义概率数据关联算法相结合,实现了多目标跟踪。通过仿真证明,与交互式多模型方法和数据驱动的 GP 运动跟踪器等广泛使用的算法相比,混合驱动方法的性能有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid-driven Gaussian process online learning for highly maneuvering multi-target tracking

The performance of existing maneuvering target tracking methods for highly maneuvering targets in cluttered environments is unsatisfactory. This paper proposes a hybrid-driven approach for tracking multiple highly maneuvering targets, leveraging the advantages of both data-driven and model-based algorithms. The time-varying constant velocity model is integrated into the Gaussian process (GP) of online learning to improve the performance of GP prediction. This integration is further combined with a generalized probabilistic data association algorithm to realize multi-target tracking. Through the simulations, it has been demonstrated that the hybrid-driven approach exhibits significant performance improvements in comparison with widely used algorithms such as the interactive multi-model method and the data-driven GP motion tracker.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Information Technology & Electronic Engineering
Frontiers of Information Technology & Electronic Engineering COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
6.00
自引率
10.00%
发文量
1372
期刊介绍: Frontiers of Information Technology & Electronic Engineering (ISSN 2095-9184, monthly), formerly known as Journal of Zhejiang University SCIENCE C (Computers & Electronics) (2010-2014), is an international peer-reviewed journal launched by Chinese Academy of Engineering (CAE) and Zhejiang University, co-published by Springer & Zhejiang University Press. FITEE is aimed to publish the latest implementation of applications, principles, and algorithms in the broad area of Electrical and Electronic Engineering, including but not limited to Computer Science, Information Sciences, Control, Automation, Telecommunications. There are different types of articles for your choice, including research articles, review articles, science letters, perspective, new technical notes and methods, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信